Module Relations.Equality
The simplest relation: strict equality y = x between variables
Group operation (compose, inverse, identity, equal) and printer
include Union_Find.Parameters.GENERIC_GROUP with type ('a, 'b) t := ('a, 'b) t
include Union_Find.Parameters.GENERIC_MONOID with type ('a, 'b) t := ('a, 'b) t
val pretty : Stdlib.Format.formatter -> ('a, 'b) t -> unitPretty printer for relations
val pretty_with_terms :
(Stdlib.Format.formatter -> 'tl -> unit) ->
'tl ->
(Stdlib.Format.formatter -> 'tr -> unit) ->
'tr ->
Stdlib.Format.formatter ->
('a, 'b) t ->
unitpretty_with_terms pp_x x pp_y y rel pretty-prints the relation rel between terms x and y (respectively printed with pp_x and pp_y).
For placeholder variables, use pretty
val identity : ('a, 'a) tThe identity relation
Monoid composition, written using the functional convention compose f g is f \circ g. Should be associative, and compatible with identity:
- For all x,
G.compose x G.identity = G.compose G.identity x = x - For all x y z,
G.compose x (G.compose y z) = G.compose (G.compose x y) z