
Spatial Memory Safety with Dependent Types in
codex

Julien Simonnet Matthieu Lemerre Mihaela Sighireanu

September 20, 2024

1 Getting started
This document provides a user guide for the static analysis based on the dependent nominal
type system presented in [2] and implemented in the codex tool [1].

The analysis detects memory vulnerabilities (for example, null pointer dereferencing, out
of bounds memory access, unsatisfiability of a memory invariant) in C or binary programs.
For this, the analysis requires a specification of the correct memory layout of the program.
This specification is given as a set of type definitions. The types used extend C types
with specific constructs including type refinement by a predicate, unbounded unions or
parameterized type definitions.

The analysis is inter-procedural, i.e., it could analyse functions separately. For this, the
specification file may include function declarations (profile) using the type defined.

In the following, we introduce the specification language for types, the options and out-
puts of the analysis, as well as a usage methodology through several analysis examples. The
full concrete syntax for type specification is given in Section A. The formal presentation of
the analysis is given in [2].

1.1 First example in C
Consider the C code in Listing 1. It has been extracted from the code of an OS where it
was used to encode messages in an IPC (Inter-Processs Communication) mechanism. The
code defines two record types representing a list of messages (struct message) and a message
box (struct message_box) storing the head of a message list. The function zeros_buffer fills
all the buffers in a message box with zeros.

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5

6 struct message_box {

1

7 int length;
8 struct message *first;
9 };

10

11 void zeros_buffer(struct message_box *box) {
12

13 struct message * first = box->first;
14 struct message * current = first;
15

16 int length = box->length;
17

18 do {
19 for (int i = 0; i < length; i++) {
20 current->buffer[i] = 0 ;
21 }
22 current = current->next;
23 } while(current != first) ;
24 }

Listing 1: First example ex1.c

To run our analysis on this example, we provide as input to codex the C code file
ex1.c and a specification file ex1.typ defining the correct memory layout. The simplest
specification we could provide is given in Listing 2; it includes the first lines of the program
(from line 1 to 9) defining the C types used, as well as the declaration of the profile of
zeros_buffer.

Listing 2: Specification file ex1.typ
struct message {

struct message *next;
char *buffer;

};

struct message_box {
int length;
struct message *first;

};

void zeros_buffer(struct message_box *box);

If codex has been successfully installed (see README.md file in the distribution) then the
binary frama-c-codex is reachable in the command line and may be called using the following
command line

Listing 3: Command line to run our analysis
$ dune exec frama_c_codex -- -codex -codex-use-type-domain \

-codex-debug 0 -codex-exp-dump ex1.cdump -machdep gcc_x86_32 \
ex1.c -codex-html-dump ex1.html -codex-type-file ex1.typ \
-main zeros_buffer

2

This command line specifies, in addition to the file including the C code (argument ex1.c)
and the specification file (option -code-type-file ex1.typ),

• the trigger of the type analysis by option -codex-use-type-domain,

• the machine dependent architecture by option -machdep gcc_x86_32

• the basic verbosity level for (debug) messages printed by option -codex-debug 0,

• the function representing the entry point of the analysis by option -main zeros_buffer,

• the name of files to which is outputted the result of the analysis in
text form (option -codex-exp-dump ex1.cdump) and in HTML format (option
-codex-html-dump ex1.html).

The output of the analysis in the file ex1.cdump1 contains the following lines divided in
five sections:

1 ex1.c:13.29-39: `box->first' -> {0} or ([1..0xFFFFFFFF] : (Name(struct message))[{0}].0*)
2 ex1.c:13.29-32: `box' -> {0} or ([1..0xFFFFFFFF] : (Name(struct message_box))[{0}].0*)
3 ...
4 ... See full output in next section
5 ...
6 ex1.c:23.23-28: `first' -> {0} or ([1..0xFFFFFFFF] : (Name(struct message))[{0}].0*)
7 Unproved regular alarms:
8 ex1.c:13: Memory_access(box->first, read) {true;false}
9 ex1.c:20: Memory_access(current->buffer, read) {true;false}

10 ex1.c:20: Memory_access(*(current->buffer + i), write) {true;false}
11 ex1.c:22: Memory_access(current->next, read) {true;false}
12 Unproved additional alarms:
13 + ex1.c:20 : { *(current->buffer + i) = (char)0; } -> store_param_nonptr ;
14 Proved 1/5 alarms
15 Unproved 4 regular alarms and 1 additional alarms.

• The first part, before “Unproved regular alarms” (excerpt given at lines 1 to 6), gives
the abstract states computed by the analysis at each program point of zeros_buffer,
the function analyzed. The meaning of these lines is explained in Section 2.2.

• The second part starts with “Unproved regular alarms” (lines 7 to 11) and lists the
potential memory vulnerabilities detected. For instance, at line 8 above, the memory
access done by the read of box->first at line 13 in ex1.c is reported to be a potential
null pointer dereferencing. Similar read vulnerabilities are listed at lines 20 and 22. In
addition, at line 20 of ex1.c, the write at the memory address (current->buffer + i)
is reported to be a potential out-of-bounds access.
Notice that, once an alarm has been reported for the access to an address, the possibly
invalid pointer is assumed to be valid to prevent the generation of redundant alarms

1The format of files .cdump allows to navigate in the source code using emacs compilation mode by click
on the location part (first characters) of each line.

3

for this address. For instance, the memory access at line 13 is repeated at line 16 of
ex1.c, but it is not reported again as a memory vulnerability.

• The third part starts with “Unproved additional alarms” (lines 12 and 13 above)
and reports vulnerabilities inside the program’s expressions. These expressions appear
in the analysis’s transfer functions. Because a transfer function may be called several
times, these alarms may rbe epeated and may include some alarms of the second part
above. In our example, the analysis reports a vulnerable memory write inside a buffer
at line 20 of ex1.c, which is exactly the third regular alarm, i.e., reported at line 10 of
the listing above.

• The fourth part, starting with “Proved”, gives the ratio of memory accesses proved
safe over the total number of memory accesses.

• The fifth part, starting with “Unproved”, summarizes the total number of alarms
already explained in the second and third parts.

The regular alarm reported at line 13 of ex1.c is a false alarm for our code because
the zeros_buffer function is always called with a not null argument. To specify that the
parameter box is always not null, we refine the initial specification by replacing ’*’ by ’+’
before box in the declaration of zeros_buffer function as follows:

Listing 4: Refined specification ex1-1.typ
struct message {

struct message *next;
char *buffer;

};

struct message_box {
int length;
struct message *first;

};

void zeros_buffer(struct message_box +box);

By running the analyzer with the new specification ex1-1.typ for the code ex.c, we
obtain the output below, where the memory accesses at lines 13 and 16 are reported to be
safe.

...
Unproved regular alarms:
ex1.c:20: Memory_access(current->buffer, read) {true;false}
ex1.c:20: Memory_access(*(current->buffer + i), write) {true;false}
ex1.c:22: Memory_access(current->next, read) {true;false}
Unproved additional alarms:
+ ex1.c:20 : { *(current->buffer + i) = (char)0; } -> store_param_nonptr ;
Proved 2/5 alarms
Unproved 3 regular alarms and 1 additional alarms.

4

Four memory accesses are still unproved because the memory layout has a stronger
invariant than the one given by the new specification. We provide in Section 4 the full
process of proving the spatial memory safety for zeros_buffer by refining the specification of
the memory layout.

1.2 First program in binary
We can also run our analysis on a binary file which shall be executable (have all addresses
resolved). To illustrate this analysis on our running example, we add the following main
function to Listing 1 in order to obtain an executable file ex1_full.c

1 int main(void) {
2 // Allocates the message box
3 struct message_box *box = malloc(sizeof(struct message_box));
4 box->length = 20;
5 box->first = NULL;
6 for (int i = 0; i < 10; i++) {
7 struct message *lst = malloc(sizeof(struct message));
8 lst->buffer = malloc(sizeof(char) * box->length);
9 lst->next = box->first;

10 box->first = lst;
11 }
12

13 // Fills the content of message box with zeros
14 zeros_buffer(box);
15

16 return 0;
17 }

Listing 5: First example with main function

The source code is compiled using the following command line to generate the executable
ex1_full.exe:

Listing 6: Command line to compile ex1_full.c
$ gcc -O0 -o ex1_full.exe -m32 -fno-stack-protector ex1_full.c

The compilation is done using gcc and the following options:

• option -O0 limits the optimizations during the compilation in order to keep the exe-
cutable close to the original program and this helps the user to interpret the messages
sent by the analyzer;

• option -m32 compiles the program for 32-bits architecture, which is the only one sup-
ported currently by our analysis;

• option -fno-stack-protector removes stack protection against stack writing overflow
to easily compute the addresses on stack.

5

If codex has successfully been installed, the binary binsec-codex is reachable in the
command line and may be called as follows for our example:

Listing 7: Command line to compile C code
$ dune exec binsec_codex -- -codex ex1_full.exe \

-entrypoint zeros_buffer -codex-type-file ex1.typ

The command sets the name of the function used as entry point of the analysis (option
-entrypoint) and the name of the specification file (option -codex-type-file ex1.typ).
The command produces the following output:

1 ...
2 [codex:result] [0xfedcba98] Fixpoint reached at iteration 1.
3 [codex:result] [0xfedcba98]
4 Over ##
5 [codex:result] [0xfedcba98] Nodes in the graph (with call stack): 37
6 [codex:result] [0xfedcba98] Number of instructions (no call stack): 37
7 [codex:result] [0xfedcba98] End of analyze log
8 ### Alarms ###
9

10 == _none_ ==
11 -alarm count-,-alarm- invalid_load_access,0,1,[0x000011e6]
12 -alarm count-,ptr_arith,26,4,[0x000011ac 0x000011cc 0x000011d2 0x000011ee]
13 -alarm count-,store_param_nonptr,1,1,[0x000011d4]
14

15

16 -total alarm count-,6
17

18 Analysis time: <dummy>
19 Total alarms: 6
20 Preprocessing time : 0.003372s
21 Analysis time : 0.105409s

• The first part, before “### Alarms ###”, was shorten as it is a full journal of the
operations done by the binary analysis.

• The second part, starting with “### Alarms ###”, reports the vulnerabilities found.
For instance, the line 11 reports that the instruction at address 0x000011e6 attempts
an invalid read in the memory (similar to a null pointer dereferencing in C). To obtain
the mnemonic of an instruction at some address, you could use objdump as explained
below. At line 12, the alarm ptr_arith points out that a pointer arithmetic operation
may return an invalid pointer. This is an unnecessary test done by the analysis because
the code may not use this address, but it is useful to prevent wrong memory accesses.
Finally, the vulnerability store_param_nonptr reported at line 13 corresponds to the
one reported in the analysis of the C code for the out-of-bound memory write at line
20.

• The third part, starting with “Total alarms”, summaries the number of alarms found.

6

• The fourth part, starting with “Preprocessing time”, gives the time used for parsing
the specification and building the initial memory configuration fixed by the executable
file.

• The fifth part, starting with “Analysis time”, gives the time actually spent analyzing
the binary program.

When interpreting the output of the binary analysis, it is useful to decompile the exe-
cutable in order to obtain the instructions at each address. This may be obtained by calling
objdump on the program ex1_full.exe as follows:

$ objdump -d ex1_full.exe > ex1_full.objdump

For instance, the file ex1_full.objdump includes the following code corresponding to the
function zeros_buffer:
. . .
00001199 <zeros_buffer >:

1199: 55 push %ebp
119a : 89 e5 mov %esp,%ebp
119c : 83 ec 10 sub $0x10,%esp
119 f : e8 00 01 00 00 call 12a4 <__x86.get_pc_thunk.ax>
11a4 : 05 34 2e 00 00 add $0x2e34,%eax
11a9 : 8b 45 08 mov 0x8(%ebp),%eax
11ac : 8b 40 04 mov 0x4(%eax),%eax
11 af : 89 45 f4 mov %eax,−0xc(%ebp)
11b2 : 8b 45 f4 mov −0xc(%ebp),%eax
11b5 : 89 45 fc mov %eax,−0x4(%ebp)
11b8 : 8b 45 08 mov 0x8(%ebp),%eax
11bb : 8b 00 mov (%eax),%eax
11bd : 89 45 f0 mov %eax,−0x10(%ebp)
11c0 : c7 45 f8 00 00 00 00 movl $0x0,−0x8(%ebp)
11c7 : eb 12 jmp 11db <zeros_buffer+0x42>
11c9 : 8b 45 f c mov −0x4(%ebp),%eax
11cc : 8b 50 04 mov 0x4(%eax),%edx
11 c f : 8b 45 f8 mov −0x8(%ebp),%eax
11d2 : 01 d0 add %edx,%eax
11d4 : c6 00 00 movb $0x0 ,(%eax)
11d7 : 83 45 f8 01 addl $0x1,−0x8(%ebp)
11db : 8b 45 f8 mov −0x8(%ebp),%eax
11de : 3b 45 f0 cmp −0x10(%ebp),%eax
11e1 : 7c e6 j l 11c9 <zeros_buffer+0x30>
11e3 : 8b 45 f c mov −0x4(%ebp),%eax
11e6 : 8b 00 mov (%eax),%eax
11e8 : 89 45 fc mov %eax,−0x4(%ebp)
11eb : 8b 45 fc mov −0x4(%ebp),%eax
11ee : 3b 45 f4 cmp −0xc(%ebp),%eax
11 f1 : 75 cd jne 11c0 <zeros_buffer+0x27>
11 f3 : 90 nop
11 f4 : 90 nop
11 f5 : c9 leave
11 f6 : c3 ret

. . .

7

2 C analysis interface
In this section, we give an overview of the interface of our analyzer for the analysis of C
code, i.e., the options of the analysis and the output it produces. The command line to call
the analysis has the following form:

Listing 8: Command line to run our analysis
$ dune exec frama_c_codex -- -codex <list of options> input_code.c

2.1 Options overview
The analysis may be tuned using the following options:

• Option -codex-use-type-domain selects our analysis that employs the domains based
on types (we used it in all our examples until now).

• Option -codex-type-file fname fixes fname as input specification file; by convention,
the extension of this file is .typ.

• Option -codex-use-loop-domain triggers the usage of a specific abstract domain, called
induction variable analysis domain, which allows a precision gain when analyzing loops
with inductive invariants.

• Option -codex-debug n activates the level n of debug messages (0 is less verbose than
3).

• Option -focusing includes the points-to predicate domain from [3], which keeps track
of the content of the memory during some analysis steps in order to increase the
precision.

• Option -codex-serialize-cache, used in combination with -focusing, activates the
join and widen operations in the points-to memory domain from [3]; this increases
precision, but also may degrade slightly the time performance or may produce some
crashes.

• Option -codex-use-weak-types enables the usage of “weak types” for the dynamically
allocated values not yet initialized. This permit to infer the type of the allocated value
semantically during the analysis of the initialization code, rather than syntactically
using the type used at the allocation point.

• Option -codex-html-dump fname.html sets fname.html as output file for an interest-
ing graphical representation of our analysis that details the computed abstract states
at each point of the analyzed functions. Figure 1 illustrates this output on our running
example.

8

Figure 1: HTML output for our example

• Option -main fun set fun as entry point of the analysis starting with the specification
of this function. The functions called by the entry point are analyzed in an inter-
procedural way, i.e., their specification is used to create a summary and this summary
is used by the analysis at each call point. This behaviour is disabled for functions
specified to be inline (see Section 4).

2.2 Output overview
Abstract state: Our analysis first outputs the abstract states computed at each program
point. We provide a semantic to this output by illustrating it on the output produced for
the running example of the first section.

For instance, the abstract state computed for line 13 of the file ex1.c is given below. It
states that the value stored by the field first at address given by box is either 0 or a value
in the interval [1..0xFFFFFFFF] (the interval domain is used to abstract sets of numerical
values). In addition to the interval of values, the type of box->first is reported to be a
pointer at offset 0 inside a region starting at an address of type struct message. Notice that
Name()[0] is used to unify the notation for simple allocated pointers and the start of an array.

1 ex1.c:13.29-39: `box->first' -> {0} or ([1..0xFFFFFFFF] : (Name(struct message))[{0}].0*)

For the variables of numeric type, like i in Listing 1, the abstract value computed at
line 19 is a 32-bits integer value, strictly less than length, so the computed interval is [0..0
x7FFFFFFE]. For this reason the expression used at line 20, current->buffer + i, is associated
with the abstract value denoting the interval [0..0x7FFFFFFE] (when current->buffer is 0)
or a pointer in the interval [1..0xFFFFFFFF]. The type of the last pointer is pointer to char

9

(where char is of 1-byte size) inside a region at a distance from the start of the region in the
interval [0..0x7FFFFFFE].

1 ex1.c:19.24-32: ‘i < length’ -> {0; 1}
2 ex1.c:19.24-25: `i' -> [0..0x7FFFFFFF]
3 ...
4 ex1.c:20.12-27: `current->buffer + i' -> [0..0x7FFFFFFE]
5 or ([1..0xFFFFFFFF] : (char(1))[{0}].0* + [0..0x7FFFFFFE])
6 ex1.c:20.12-27: `current->buffer' -> {0} or ([1..0xFFFFFFFF] : (char(1))[{0}].0*)
7 ex1.c:20.12-19: `current' -> {0} or ([1..0xFFFFFFFF] : (Name(struct message))[{0}].0*)

The following output line states that the value of the expression current != first at line
23 is either 0 or 1:

1 ex1.c:23.12-28: `current != first' -> {0; 1}

Reported alarms: The following parts of the output concern the potential vulnerabilities
detected. The location of a reported vulnerability is given by the line in the source code
and the columns of the memory access expression in this line. In the analysis of C code, two
types of alarms are reported:

Regular alarms: mostly related to memory vulnerabilities or arithmetic errors. Once re-
ported, these vulnerabilities are assumed to be false in the remainder of the analysis
in order to avoid redundant alarms.

• Memory_access(addr, read) signals that an attempt to read the memory at addr
may be invalid because the pointer addr may be invalid.

• Memory_access(addr, write) signals that an attempt to write in the memory at
addr may be invalid because the pointer addr may be invalid.

• Division_by_zero signals that a division may use a zero divider.

Additional alarms: are related to vulnerabilities found inside the transfer functions and
can be generated multiple times for the same reason.

• s -> load_param_nonptr indicates that an attempt to read the memory in state-
ment s may be an invalid pointer, usually because the pointer reads out of bounds.

• s -> store_param_nonptr indicates that an attempt to write in the memory in
statement s may be an invalid pointer, usually because the pointer writes out of
bounds.

• s -> array_offset_access indicates that an attempt to access the memory in
statement s in some operations using arrays may be invalid.

• s -> serialize indicates that a join (or widen) operation tried to join (respec-
tively widen) two abstract pointers of different types.

• s -> weak-type-use indicates that a recently allocated pointer whose type is not
yet known is potentially used to access the memory.

10

• s -> typing_store indicates that the type of a value may be incorrect for the
following reasons:

– the type of the value written in memory may be wrong,
– the type of the parameter given does not correspond to the pre-condition of

a function summary,
– the returned value of a function does not have the correct type.

• s -> free-on-null-address indicates that a potentially null pointer was deallo-
cated by statement s.

• Return -> weak-type-leak indicates that the type of a recently allocated pointer
is not known. This happens at the exit point of a function, when the analysis
detects that a pointer was not written in the memory, neither returned from the
function, thus leading to a memory leak.

• Return -> incompatible-return-type signals that the type of the returned value
does not correspond to the function profile in the specification when the specified
return type is void or the body does not return a value for a non-void return type.

3 Binary analyzer interface
In this section, we give an overview of the interface of the binary analysis: the options given
in the command line and the meaning of the output produced. The analysis is called with
the following line:

Listing 9: Command line to compile C code
$ dune exec binsec_codex -- -codex <list of options> input_file.exe

3.1 Options overview
The binary analysis may be tuned using the following options, some of them being shared
with the C code analysis:

• Option -codex-type-file fname fixes fname as input specification file; by convention,
the extension of this file is .typ.

• Option -codex-use-loop-domain triggers on the usage of a specific abstract domain,
called induction variable analysis domain, which allows a precision gain when analyzing
loops with inductive invariants.

• Option -codex-debug-level n activates the level n of debug messages (0 is less verbose
than 3).

• Option -no-focusing removes the points-to predicate domain from [3], which keeps
track of the content of the memory during few analysis steps which decreases precision.

11

• Option -codex-serialize-cache, used in combination with -focusing, activates the
join and widen operations in the points-to memory domain from [3]; this increases
precision, but also may degrade slightly the time performance or may produce some
crashes.

• Option -codex-use-weak-types enables the usage of “weak types” for the dynamically
allocated values not yet initialized. This permit to infer the type of the allocated value
semantically during the analysis of the initialization code, rather than syntactically
using the type used at the allocation point.

• Option -hooks allows us to stub some function calls or statements (given by their
address) in the analysis. For instance:

hooks = \
0x0255d4=stop, \
iniTabTrans=stop, \
0x025598=stop, \
0x100055=skip_to(0x10005f), \
0x0242d7=nop, \
0x02558f=return_unknown(int), \

This indicates to the analysis to stop the exploration beyond instructions 0x0255d4
and 0x025598 and when reaching a call to function iniTabTrans. The hook skip_to
states that the analysis shall skip statements from line 0x100055 to line 0x10005e. The
hook return_unknown(int) states that the statement at line 0x02558f is replaced by a
store of a random value of int type in register ax. As for hook nop, it works as a way
to skip to the next address.

• Option -config fname sets fname as input configuration file; by convention, the ex-
tension of this file is .ini, in which the above options can be grouped instead being
passed directly in the command line. Such configuration files may be used by several
command lines.

3.2 Output overview
The binary analysis outputs a list of alarms of the following kinds:

• invalid_load_access [addrs] indicates that an attempt to read the memory in in-
structions at addresses addrs is possibly invalid because the pointer used is possibly
null.

• invalid_store_access [addrs] indicates that an attempt to write in the memory in
instructions at addresses addrs is possibly invalid because the pointer used is possibly
null.

12

• load_param_nonptr [addrs] indicates that an attempt to read the memory is invalid
because the pointer is out of bounds

• store_param_nonptr [addrs] indicates that an attempt to write in the memory is
invalid because the pointer is out of bounds.

• array_offset_access [addrs] indicates that an attempt to do some operation using
arrays was invalid.

• serialize [addrs] indicates that a join or widen operation tried to join respectively
widen two abstract pointers of different types.

• weak-type-use [addrs] indicates that a recently allocated pointer whose type is not
yet known is used to access the memory.

• typing_store [addrs] indicates that the type of a value is incorrect. This corresponds
to a write of a value of wrong type or to a return value of wrong type.

• free-on-null-address [addrs] indicates that a possibly null pointer is deallocated.

• weak-type-leak [addrs] indicates that the type of a recently allocated pointer is not
known. This happens at the exit point of a function, when the analysis detects that
a pointer was not written in the memory, neither returned from the function, thus
leading to a memory leak.

• incompatible-return-type [addrs] signals that the returned value does not corre-
spond to the function profile given in the specification file.

4 Specification using dependent types
Our analysis does not need to modify the input programs with annotations. To specify the
layout of the memory for which the memory vulnerabilities are avoided, the user has to
provide a specification file. In this section, we present the specification language used by
our analysis. This presentation is done gradually, starting with the automatic generation of
a rough specification from the types used in the program (using cproto) and ending with
a refined specification including most of the constructs of the specification language. The
concrete syntax of our specification language is given in Section A.

4.1 Automatic generation from C programs
The concrete syntax of our specification language is based on the C syntax for type and
function declarations. This helps to easily generate a first specification using cproto, a
tool available in any GNU based distribution.

For instance, to call cproto on the code at Listing 5, we use the following command:

13

$ cproto -E 0 -f 3 -n -q -T -o ex1.typ ex1_full.c

The command produces the following output stored in the file ex1.typ (specified by the
option -o above):

Listing 10: Specification produced with cproto from ex1_full.c
struct message {

struct message *next;
char *buffer;

};

struct message_box {
int length;
struct message *first;

};

void zeros_buffer(struct message_box *box);
int main(void);

4.2 Defining type names
Our analysis is based on a nominal type system, like in C. This means that two values may
not be equal if they have different types, even if these types correspond to the same domain
of values.

The only predefined type name for our type system is byte, corresponding to a one byte.
To define new type names, we employ the type definition, similar to typedef in C. For instance,
the following specification defines a new type called foo to be an array of four byte, like the
type int:
type char = byte;
type int = byte[4];
type foo = byte[4];

However, pointers to type int and foo may not alias because of the nominal feature of the
type system.

The syntax used in C to define record type, like in Listing 4.1, is internally dealt as a
syntactic sugar and translated to:

Listing 11: Type definitions obtained from the ones produced with cproto from ex1_full.c
type struct message = struct {

struct message *next;
char *buffer;

};

type struct message_box = struct {
int length;
struct message *first;

};

14

After the equal sign, the struct type expression defines a record type with the same syntax
as in C.

Our type construct is equivalent to a C type definition typedef without the attribute
may_alias available for GNU C2. Therefore, the equality test fails between values of different
types even if their value domain is the same, i.e., between value of type foo and int defined
above. Like in C, our construct prevents writing at an address a value typed by a different
type name than the address. This semantics of memory stores in presence of aliasing is
called weak update in [2]. To make clear this behaviour of our type system, our specification
language forbids the usage of typedef; if this construct is used, the parsing craches with an
error message.

Another feature of our type system is that it allows only pointer to type names, like in
C. Notice that in our running example from Listing 4.1, struct message is a type name.

4.3 Refined types
To introduce the refined types, let us consider the example at Listing 1. For the specification
given at Listing 4.1, a possible memory layout is provided at the bottom of Figure 2: the
first line illustrates a possible content for the memory while the second line gives the type
of each memory region.

struct message {
struct message* next;
char* buffer;

};

struct message_box {
int length;
struct message* first;

};

void zeros_buffer(struct message_box* box);

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

10
11 void zeros_buffer(struct message_box* box);

Figure 2: Memory layout allowed by the initial specification

This specification of the memory layout allows negative values for the length field of a
message_box and a buffer in message containing a single char. Our analysis reports potential

2https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html

15

 https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html

vulnerabilities while accessing current->buffer at line 20 in read and write.

Unproved alarms:
...
ex1.c:20: Memory_access(current->buffer, read) {true;false}
ex1.c:20: Memory_access(*(current->buffer + i), write) {true;false}
...

This vulnerability does not appear if the length field is positive. To specify this, we may
use a refined type expression “int with self >= 0”. Similarly, the vulnerability for memory
read may be removed if the pointer current is not null, which may be expressed using the
refined type “struct message* with self != 0”. We propose to denote the above refined type
expression for the non null pointers by the syntactic sugar “struct message+”.

Moreover, to control the aliasing of the length field inside the struct message_box by a
variable typed by an int*, we introduce a new type integer of 4-byte, different from int.

The new specification, given in Figure 3 integrates these changes. To recall the initial
types, we reproduce the original type definitions in C at the right of the figure.

struct message {
struct message* next;
char* buffer;

};

struct message_box {
integer with self >= 0 length;
struct message* first;

};

void zeros_buffer(struct message_box +box);

1 struct message {
2 struct message *next;
3 char *buffer
4 };
5
6 struct message_box {
7 integer length;
8 struct message *first;
9 };

10
11 void zeros_buffer(struct message_box *box);

Figure 3: Refined type for length and non null pointer as function parameter

The new specification does not allow to remove the alarms reported for null pointer
dereference while accessing pointer variables. By looking at both the code and the reported
alarms, we identify that the list of message stored in first is circular. To specify this property,
we set next field to be of type non null pointer, which over-approximates the circular list
shape by a lasso shape (since the number of memory addresses is finite). Furthermore, we
observe that the code employs both buffer and first fields as non null pointers.

16

struct message {
struct message+ next;
char+ buffer;

};

struct message_box {
integer with self >= 0 length;
struct message+ first;

};

void zeros_buffer(struct message_box+ box);

1 struct message {
2 struct message *next;
3 char *buffer
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

10
11 void zeros_buffer(struct message_box* box);

Figure 4: Non null pointers to specify a lasso shaped list

With the specification above, our analysis reports the following additional alarm for an
out of bound access to the memory:

Unproved additional alarms:
+ ex1.c:20 : { *(current->buffer + i) = (char)0; } -> store_param_nonptr ;

Indeed, stating that buffer is not null does not mean that more than one char is allocated
at this address.

4.4 Existential types
A way to remove the previous reported alarm on out of bound memory access is to specify
that buffer is the start address of an array of some size. This is done using the existential
type expression “∃x:T. U” which introduces a local variable x in a type U. In our example,
the variable len, of positive integer value is introduced as the size of the allocated memory
region at the address buffer. Therefore, buffers may contain multiple character not just
one and, moreover, each buffer may have a different length. The resulting specification and
an allowed memory layout are given by Figure 5. Therefore, the existential types allow to
express local invariants in a type expression, i.e., invariants between the fields of the same
memory region.

17

∃ len:integer with self >= 0.
struct message {

struct message+ next;
char[len]+ buffer;

};

struct message_box {
integer with self >= 0 length;
struct message+ first;

};

void zeros_buffer(struct message_box+ box);

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

10
11 void zeros_buffer(struct message_box* box);

Figure 5: Existential type to specify an allocated memory buffer of some length

4.5 Parameterized types
The specification in Figure 5 does not remove the false alarm reported for array out of bound
access because the function zeros_buffer expects that all the buffers in a message box have
the same length given by the field length in message_box. This is not a local invariant for a
memory region because the value stored in some memory region (field length in a region typed
by message_box) is related with a value (length of a buffer) in another region of a different
type (e.g., message). To exchange this information between memory regions, we specify that
the type message is parameterized by a value of type integer and we use existential and
refined type expressions to pass the value of the field length as actual parameter of the first
pointer to a message(mlen) type. This specification is given in Figure 6.

18

struct message(len) {
struct message(len)+ next;
char[len]+ buffer;

};

∃ mlen:integer with self > 0.
struct message_box {

integer with self = mlen length;
struct message(mlen)+ first;

};

void zeros_buffer(struct message_box+ box);

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

10
11 void zeros_buffer(struct message_box* box);

Figure 6: Parameterized type to link properties of various memory regions

With this specification, our analyzer does not report memory vulnerabilities, allowing
us to prove that the code of the actual OS is spatially memory safe for the memory layout
given by the specification.

4.6 Union types
To illustrate union type expression, we take an example extracted from the Olden benchmark,
used by the tool Checked-C of Microsoft to illustrate its features for dynamic verification.
The code defines a binary tree type node, a function creating a complete binary tree and
a function traversing the tree to print it. By applying cproto, we obtain the following
specification file:
struct node {

int value;
struct node *left;
struct node *right;

};
struct node* RandTree(int n);
void PrintTree (int n, struct node *node);
int main(void);

Using union type expressions, we could express that a binary tree is full, i.e., each node
had two or zero children. The union type collects the two types of nodes: an interior node
has two non null pointers two its children, a leaf node has two null values as children.
type node = struct {

byte[4] value;
union {

struct { /* interior node */
node+ left;

19

node+ right;
} interior;

struct { /* leaf node */
byte[4] with self = 0 left;
byte[4] with self = 0 right;

} leaf;
} succ;

};

Union types combined with parameterized types are useful to express the stronger in-
variant of a perfect binary tree. For this, we introduce a parameter for the type node to
denote the height h of the node. If h is greater than 1 then the node is interior so it has both
children not null and at an height decreased by one; otherwise the node is a leaf and has
both children null. The type for a non null pointer to a complete binary tree of any height
is nodeptr type, whose definition employs existential types to obtain an unbounded union
type.
type node(h:byte[4]) = struct {

byte[4] value;
union {

(struct { /* interior node */
node(h-1)+ left;
node(h-1)+ right;

} with (h > 1)) interior;

(struct { /* leaf node */
byte[4] with self = 0 left;
byte[4] with self = 0 right;

} with (h = 1)) leaf;
} succ;

};

type nodeptr = ∃ h:byte[4] with self > 0. node(h)+

4.7 Specifying functions
Our specification language follows the C language syntax for function declaration. To this,
we add several advanced features:

• Annotation inline forces the analyzer to inline the function code rather than applying
an inter-procedural analysis; if the function is recursive, the analysis will fail.

• Annotation pure signifies that the function does only “in frame” operations on memory,
like reading, writing on addresses at local variables or writing in a recently allocated
region. In other words, it indicates that the abstract memory is unchanged. This
allows the analyzer to be more precise in inter-procedural analysis of function calls.

• Existential types may be used to express invariants between function’s arguments and
result. For instance, the following specification states that RandTree returns a complete
binary tree of height n.

20

∃ h:int with self > 0. (node(h)+ RandTree((int with self = h) n));

• Functions may receive as arguments pointers to functions:
list+ map_list_int(list + l, ([int] -> int)+ f);

5 Conclusion
For more details on the specification language and the results of the analysis, please consult
[1]. For explanation of the technique used by the analyser, the reference [2] is a a good start.

References
[1] CODEX site, 2024. https://codex.top.

[2] Anon. A dependent nominal physical type system for static analysis of low level code.
Technical report, 2024. Extended version of this paper including the appendix.

[3] Olivier Nicole. Automated Verification of Systems Code using Type-Based Memory
Abstractions. PhD thesis, University Paris-Saclay, 2022. https://theses.hal.
science/tel-03962643v2.

21

https://codex.top
https://theses.hal.science/tel-03962643v2
https://theses.hal.science/tel-03962643v2

A Concrete Syntax for the Specification
We provide here the concrete syntax to be used to specify types in the input file of our
analysis.

A.1 Type definition and function profile syntax

ρ ::= n (type name)
| n(α1, . . . , αℓ) (type constructor)

spec ::= def∗ (specification definitions)

def ::= type_def (type definition)
| [inline] [pure] fun_def (function profile definition)

type_def ::= type ρ = τ (type definition)
| c_type; (C type definition)

c_type ::= struct ρ {τ1 f1; · · · ; τn fn; } (C struct type)
| union ρ {τ1 f1; · · · ; τn fn; } (C union type)
| ex α : τ. c_type (existential C type definition)

fun_def ::= τ n (τ1 a1, · · · , τℓ aℓ) (function profile)
| ex α : τ . fun (existential function profile)

ex ::= ∃ | \exists

22

A.2 Type expressions

η ::= byte (byte name)
| n(e1, ..., eℓ) (parameterized type)
| struct n (struct with name)
| struct n(e1, ..., eℓ) (struct with name)

Λ ::= [τ1, · · · , τℓ] -> τ (function type)
| ex α : τ .Λ (existential function type)

τ ::= η (named types)
| η* (possibly null pointer type)
| η+ (non null pointer type)
| struct {τ1 f1; · · · ; τℓ fℓ; } (struct type)
| τ with p (refinement type)
| τ[e] (array type)
| ex α : τ1 . τ2 (existential type)
| union {τ1 f1; · · · ; τℓ fℓ; } (union type)
| Λ+ (function pointer type)

p ::= e1 ▷◁ e2 (comparison with ▷◁ ∈ {<,<=,==, ! =, >,>=})
| p1 && p2 (conjunction)
| p1 || p2 (disjunction)

e ::= self (self expression)
| c (constant with c ∈ Z)
| α (symbolic variable)
| e1 ⋄ e2 (binary operation with ⋄ ∈ {+,−, ∗, /,%, |,&})

Symbol ∃ corresponds to U+2203 in unicode. The brackets in mathematical style correspond
to optional parts of the syntax, while the ones in typewriter font correspond to ponctuation
in the concrete syntax.

23

	Getting started
	First example in C
	First program in binary

	C analysis interface
	Options overview
	Output overview

	Binary analyzer interface
	Options overview
	Output overview

	Specification using dependent types
	Automatic generation from C programs
	Defining type names
	Refined types
	Existential types
	Parameterized types
	Union types
	Specifying functions

	Conclusion
	Concrete Syntax for the Specification
	Type definition and function profile syntax
	Type expressions

