list
_

Relational Abstractions Based on Labeled
Union-Find

D. Lesbre, M. Lemerre, H. R. Ait-El-Hara, F. Bobot

PLDI — June 20th, 2025 — Seoul

n |CN SRTII\‘T
A université
PARIS-SACLAY

https://orcid.org/0000-0002-4328-6753
https://orcid.org/0000-0002-1081-0467
https://orcid.org/0000-0001-7909-0413
https://orcid.org/0000-0002-6756-0788

What is this talk about

init:
loop(0, 4);

loop(x,y):
x1 =x + 1;
yi =y +2;
if(...) loop(xl,yl)
else exit(x1l,y1);

exit(x2,y2):
y3 = y2 + 1;
assert(2 * x2 + 6 == y3);

Many applications

Static analysis, SMT solvers, datalog
engines, e-graphs...

2/14

What is this talk about

o 0 4

init:

loop(0, 4); x1 ::X'+'1T Tyl =y+2
1 6

loop(x,y):

x1 =x + 1;

yi =y +2;

if(...) loop(xl,yl)
else exit(x1,y1);

exit(x2,y2): Many applications

y3 = y2 + 1; Static analysis, SMT solvers, datalog
assert(2 * x2 + 6 == y3); engines, e-graphs...

2/14

What is this talk about

init: N y
100p(0, 4)’ X].:X—F].T Ty1:y+2
x1 y1
loop(x,y):
x1 =x + 1;
yi =y +2;

if(...) loop(xl,yl)
else exit(x1,y1);

exit(x2,y2): Many applications

y3 = y2 + 1; Static analysis, SMT solvers, datalog
assert(2 * x2 + 6 == y3); engines, e-graphs...

2/14

What is this talk about

init:
loop(0, 4);

loop(x,y):
x1 =x + 1;
yi =y +2;
if(...) loop(xl,yl)
else exit(x1l,y1);

exit(x2,y2):
y3 = y2 + 1;
assert(2 * x2 + 6 == y3);

y=2x+4
X ¢é——Y
xlzx—l—lT Ty1:y+2
x1 y1

Many applications

Static analysis, SMT solvers, datalog
engines, e-graphs...

2/14

What is this talk about

init:
loop(0, 4);

loop(x,y):
x1 =x + 1;
yi =y +2;
if(...) loop(xi,yl)
else exit(x1l,y1);

exit(x2,y2): Many applications

y3 = y2 + 1; Static analysis, SMT solvers, datalog
assert(2 * x2 + 6 == y3); engines, e-graphs...

2/14

What is this talk about

init:
loop(0, 4);
loop(x,y):
x1 =x + 1;
yi =y +2;
if(...) loop(xi,yl)

else exit(x1,y1);

exit(x2,y2): Many applications

y3 :=y2 + 1; Static analysis, SMT solvers, datalog
assert(2 * x2 + 6 == y3); engines, e-graphs...

2/14

What is this talk about

init:
loop(0, 4);
loop(x,y):
x1 =x + 1;
vyl =y + 2;
if(...) loop(x1,y1) . Jy3=y2+1
else exit(x1,y1); y3=2%x2+6 \\yB
exit(x2,y2): Many applications
y3 =y2 + 1; Static analysis, SMT solvers, datalog

assert(2 * x2 + 6 == y3);

engines, e-graphs...

2/14

Context

Program abstractions usually fall on a cost/precision spectrum:
Low precision Very precise
O(n) O(e")

3/14

https://dx.doi.org/10.1145/512760.512770
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1007/BF00268497
https://dx.doi.org/10.1007/3-540-45789-5_11
https://dx.doi.org/10.1109/WCRE.2001.957836

Context
Program abstractions usually fall on a cost/precision spectrum:
Low precision Very precise
O(n) O(e")
non-relational polyhedra
[Cousot1977] [Cousot1978|

x €[m: M| Yexi<c

3/14

https://dx.doi.org/10.1145/512760.512770
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1007/BF00268497
https://dx.doi.org/10.1007/3-540-45789-5_11
https://dx.doi.org/10.1109/WCRE.2001.957836

Context

QU l%:,k:’/

Program abstractions usually fall on a cost/precision spectrum:

Low precision

O(n)

Very precise

-

non-relational
[Cousot1977]
x €[m: M|

O(e")
|
weakly-relational polyhedra
[Miné2002] [Cousot1978]
ax + by < c Yexi<c
octagons affine

[Miné2001] [Karr1976]
+x &+ y <c :E:: Cixi = C

3/14

https://dx.doi.org/10.1145/512760.512770
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1007/BF00268497
https://dx.doi.org/10.1007/3-540-45789-5_11
https://dx.doi.org/10.1109/WCRE.2001.957836

QU l%:,k:’/

Context
Program abstractions usually fall on a cost/precision spectrum:
Low precision Very precise
O(n) O(e")
|
non-relational weakly-relational polyhedra
[Cousot1977] [Miné2002] [Cousot1978|
x €[m: M| ax+ by <c Yexi<c
Labeled union-find octagons affine
y=ax+b [Miné2001] [Karr1976]

y = f(x) Tx*ty<c dYoexi=c¢

3/14

https://dx.doi.org/10.1145/512760.512770
https://dx.doi.org/10.1145/512950.512973
https://dx.doi.org/10.1007/BF00268497
https://dx.doi.org/10.1007/3-540-45789-5_11
https://dx.doi.org/10.1109/WCRE.2001.957836

1. Why is labeled union-find faster than other
domains?

Why are (weakly) relational domains costly?

m Propagate constraints to improve precision
= Transitive closure is costly to compute - O(n%)

X t
xy6[12]< >zt€[03]
y V4

4/14

Why are (weakly) relational domains costly?

m Propagate constraints to improve precision

= Transitive closure is costly to compute - O(n%)
x—te[1:2];[6:7];[0:3]

t
>zt€[03]
V4

4/14

U w\%

Why are (weakly) relational domains costly?

m Propagate constraints to improve precision

m Transitive closure is costly to compute - O(n?)
X—tE[l 2]:[5:7];[0:3]N[5:9];[0:3]

z—tef0:3]

4/14

Why are (weakly) relational domains costly?
m Propagate constraints to improve precision

= Transitive closure is costly to compute - O(n%)

Unique relation assumption
Same relation on every path between two variables

= Transitive closure can be computed on a single path,
we only need to maintain a spanning tree

4/14

U w .

Consequences of the unique relation assumption

R>
y g : Rs
Associativity: Ri; R Ra; Rs ¢
(Ri;R);Rs=Ri;(R; Rs)
= : . R2
Neutral elements: X Ri=Rii (R Rs) yo >z
R
R, °
Inverse elements: id=Ry;Re—=y T 2zv—id=FR; R,

Rs

5/14

QU 'li:!%i,l,

Consequences of the unique relation assumption

R>
,——————ffét———————————”"’;? g : Rs
Associativity: Ri; R Ra; Rs ¢
(Ri;R);Rs=Ri;(R; Rs)
= : . R2
Neutral elements: X Ri=Rii (R Rs) yo >z
R
R, °
Inverse elements: id=Ry;Re—=y T 2zv—id=FR; R,
Rs

Follow-up assumption

Relations must have a group structure

5/14

TNV

2. What is labeled union-find?

Labeled union-find example

Labeled union-find adds labels to edges of union-find

r
x:2/ \:4r—|—3
X z

y=x+1

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

find returns representative and relation

r
XZQ/ \:4r+3 m find(r) = (r, id)
X V4

y=x+1

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

find returns representative and relation

r
XZQ/ \:4r+3 m find(r) = (r, id)
X V4

B find(x) = (r,x = 2r)

y=x+1

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

find returns representative and relation

r
XZQ/ \:4r+3 m find(r) = (r, id)
X z B find(x) = (r,x = 2r)
B ®m find(y)=(r,y=x+1;x=2r)
y=x+1 :(ry—2r—|—1)

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

find returns representative and relation

\—‘”*3 ® find(r) = (r, id)
B find(x) = (r,x = 2r)
B 1 y=2r+1 ®m find(y)=(r,y=x+1;x=2r)
y=x+ =(r,y=2r+1)

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

get _relation: finds the relation
between two variables

X =2r =4r+3
B get relation(z,x)

X €=rmemamemm z :Z:4r—1;(X:2r)_1
z=2x+3 =z=2x—-1

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

get _relation: finds the relation
between two variables

x =2r =4r+3
v=u+2 B get relation(z,x)

-
<

X €=rmemamemm z :Z:4r—1;(X:2r)_1
z=2x+3 v =z=2x-1
y=x+1 B get relation(z,u) = None

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

Ex: add_relation(y,v,y = 3v)

u
— =4r+3 i
X 2/ \ + add_relation: adds a new relation
v=u-+2 between variables
v

.-
.
.-
.-
.
.-
.-
-

-

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

4 u
x=2r \ r+ add_relation: adds a new relation
vV=u+2 between variables
Ex: add_relation(y,v,y = 3v)
v

-

6/14

Labeled union-find example

Labeled union-find adds labels to edges of union-find

between variables
Ex: add_relation(y,v,y = 3v)

> U
X =2r =4r+3 add_relation: adds a new relation
v=u+2
v

.-
.
.-
.-
.
.-
.-
-

-

6/14

U w .

Labeled union-find data structure

Labeled union-find

X Rooted forest with group operations on labels:
@1/‘ \ 52 Identity id: R
Rs/ \Ru Inverse -1: R - R
u v Compose ;- - RXR—>R

get_relation(n, m): add_relation(n, m, R):
Ry '™« Rm Ri "R Re
/ rn I'm

ST] .

n» m R

TNV

3. What relations can be used with labeled
union-find?

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions I

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions I

Constant offset: y =x+ b for b € Z

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions I

Constant offset: y =x+ b for b € Z
Two variable linear equality: y =ax+ bfora,be QorR, a#0

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions I

Constant offset: y =x+ b for b € Z
Two variable linear equality: y =ax+bfora,be QorR, a#0
Modulo multiplication: y = ax + b mod 2°* for a, b € BVs,, a odd

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions I

Constant offset: y =x+ b for b € Z
Two variable linear equality: y =ax+bfora,be QorR, a#0
Modulo multiplication: y = ax + b mod 2°* for a, b € BVs,, a odd
XOR-Rotate relation: y = (x xor c) rot n for c € BVg4 and n € [0 : 63]

8/14

Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions (between equivalence classes)

Constant offset: y =x+ b for b € Z
Two variable linear equality: y =ax+bfora,be QorR, a#0
Modulo multiplication: y = ax + b mod 2°* for a, b € BVs,, a odd
XOR-Rotate relation: y = (x xor c) rot n for c € BVg4 and n € [0 : 63]
Parity comparison: x mod 2 1 y mod 2, for 1 € {=, #}

8/14

4. How does labeled union-find combine with
other domains?

Factorizing numeric information

Redundant numeric information on terms:

[0:4] [1:2]

9/14

https://dx.doi.org/10.1145/3656392

U w .

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

[0:4] [1:2]

*2 +7 *3

9/14

https://dx.doi.org/10.1145/3656392

N w .

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0: 4] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 47 kg

9/14

https://dx.doi.org/10.1145/3656392

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0: 4] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 17 kg

set_value(2y, [-4 : 4]) / add relation: @ @

B find representative [4]
[10 : 17] @

9/14

https://dx.doi.org/10.1145/3656392

N w .

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0:4]N[2:2] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 47 kg

set_value(2y, [-4 : 4]) / add relation: e @
® find representative
B [4:4]via (*2)7tis [-2: 2]
B intersect with old value

9/14

https://dx.doi.org/10.1145/3656392

YURY

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0:2] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 47 kg

set_value(2y, [-4 : 4]) / add relation: e @
® find representative
B [4:4]via (*2)7tis [-2: 2]
B intersect with old value

B propagate to sub/superterms [PLDI'24] »

https://dx.doi.org/10.1145/3656392

U \A‘\

Factorizing numeric information

Redundant numeric information on terms: only store one per relational class
Group action to update values via relations:

A RxIT—1
get_value(y +7): [0:2] [1:2]
B find representative a
m A(+7, [0:4]) =7 11] ¥ e e
set_value(2y, [-4 : 4]) / add relation: e @

® find representative
= A((*2)7, [4:4)) = [2: 2] &
B intersect with old value

B propagate to sub/superterms [PLDI'24] »

https://dx.doi.org/10.1145/3656392

Exact actions

To avoid losing precision, actions must be exact:
B Constant offset with intervals is exact:
Aly=x+b, [m: M) & [m+b: M+ b]

10/14

Exact actions

To avoid losing precision, actions must be exact:
B Constant offset with intervals is exact:
Aly=x+b, [m: M) & [m+b: M+ b]

B TVPE with intervals is exact (on R or Q):
Aly =ax+ b, [m: M]) £ [am + b : aM + b]

10/14

Exact actions

To avoid losing precision, actions must be exact:
B Constant offset with intervals is exact:
Aly=x+b, [m: M) & [m+b: M+ b]

B TVPE with intervals is exact (on R or Q):
Aly =ax+ b, [m: M]) £ [am + b : aM + b]

B No exact action for constant offset or TVPE with bitwise abstraction:
A(40b011, 0b007) = 0b?7?7.

10/14

Exact actions

To avoid losing precision, actions must be exact:

B Constant offset with intervals is exact:

Aly=x+b, [m: M) & [m+b: M+ b]
B TVPE with intervals is exact (on R or Q):
Aly =ax+ b, [m: M]) £ [am + b : aM + b]
B No exact action for constant offset or TVPE with bitwise abstraction:
A(+0b011, 0b007) = 0b?77.
B XOR-Rotate relation has an exact action with bitwise abstraction:

A(y = (x xor ¢) rot k,by---b,) = d---d,
with d,' £ b,'+k XOr Cjyk

But inexact with intervals.
10/14

Other applications

m Factorize relational domains: only store relations between
relational classes:

Aly=x+bz+x<c)2z+y<c—b

11/14

Other applications

m Factorize relational domains: only store relations between
relational classes:

Aly=x+bz+x<c)2z+y<c—b

: L id
= Discover all equalities, i.e. all (x,y) such that x = y

11/14

5. Can we use an imperative structure in an
abstract interpreter?

U '\iiﬁki,l,

Only add flow insensitive relations

Flow insensitive relations: true no matter where in the program.
Especially common when running the analysis on an SSA form [PLDI'24].

When building terms:

+1

12/14

https://dx.doi.org/10.1145/3656392

U '\iiﬁki,l,

Only add flow insensitive relations

Flow insensitive relations: true no matter where in the program.
Especially common when running the analysis on an SSA form [PLDI'24].

When building terms: When joining (SSA ¢-terms):
e mIfatY band @ 25 b then

/ 1 /
" d(a,2') = (b, 1)

12/14

https://dx.doi.org/10.1145/3656392

U l%iﬂ%i,l,

Only add flow insensitive relations

Flow insensitive relations: true no matter where in the program.
Especially common when running the analysis on an SSA form [PLDI'24].

When building terms: When joining (SSA ¢-terms):
e mIfatY band @ 25 b then

/ 1 /
" &(a.2') = (b, b))

@ B ¢ of constant pairs in TVPE:

12/14

https://dx.doi.org/10.1145/3656392

U l%iﬂ%i,l,

Only add flow insensitive relations

Flow insensitive relations: true no matter where in the program.
Especially common when running the analysis on an SSA form [PLDI'24].

When building terms: When joining (SSA ¢-terms):
e mIfatY band @ 25 b then

/ 1 /
" &(a.2') = (b, b))

@ B ¢ of constant pairs in TVPE:

12/14

https://dx.doi.org/10.1145/3656392

Example: relating loop counters
int i =0, j = 4;
while(i < N) {

i+=1;

J =3

13/14

Example: relating loop counters
int i =0, j = 4;
while(i < N) {

i+=1;

J =3

Non-relational: i € [N; N], j € [4;+¢],j =1 mod 3

13/14

Example: relating loop counters
int i =0, j = 4;
while(i < N) {

i+=1;
J =3

+

Non-relational: i € [N; N], j € [4;+¢],j =1 mod 3

With union-find: j =3i+4soj € [3N+4:3N+4].

13/14

Conclusion

Labeled union-find data structure:

® Extension of union-find with edge labels

B Labels must have a group structure

Labeled union-find domain:
® Fast weakly relational domain (easy transitive closure)
® Only stores injective relations

® Can combine with other domains to store information per class

Implemented as part of the Codex static analysis library (https://codex.top)
and the Colibri2 solver (https://colibri.frama-c.com).

Postdoc positions: matthieu.lemerre@cea.fr

14/14

https://codex.top
https://colibri.frama-c.com/
mailto:matthieu.lemerre@cea.fr

	Why is labeled union-find faster than other domains?
	What is labeled union-find?
	What relations can be used with labeled union-find?
	How does labeled union-find combine with other domains?
	Can we use an imperative structure in an abstract interpreter?

