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What is this talk about

init:
loop(0, 4);

loop(x,y):
x1 =x + 1;
yi =y +2;
if(...) loop(xl,yl)
else exit(x1l,y1);

exit(x2,y2):
y3 = y2 + 1;
assert(2 * x2 + 6 == y3);

Many applications

Static analysis, SMT solvers, datalog
engines, e-graphs...
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Context

Program abstractions usually fall on a cost/precision spectrum:
Low precision Very precise
O(n) O(e")
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Context
Program abstractions usually fall on a cost/precision spectrum:
Low precision Very precise
O(n) O(e")
|
non-relational weakly-relational polyhedra
[Cousot1977] [Miné2002] [Cousot1978|
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Labeled union-find octagons affine
y=ax+b [Miné2001] [Karr1976]

y = f(x) Tx*ty<c dYoexi=c¢
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1. Why is labeled union-find faster than other
domains?



Why are (weakly) relational domains costly?

m Propagate constraints to improve precision
= Transitive closure is costly to compute - O(n%)
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Why are (weakly) relational domains costly?
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Why are (weakly) relational domains costly?
m Propagate constraints to improve precision

= Transitive closure is costly to compute - O(n%)

Unique relation assumption
Same relation on every path between two variables

= Transitive closure can be computed on a single path,
we only need to maintain a spanning tree
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Consequences of the unique relation assumption

R>
y g : Rs
Associativity: Ri; R Ra; Rs ¢
(Ri;R);Rs=Ri;(R; Rs)
= : . R2
Neutral elements: X Ri=Rii (R Rs) yo >z
R
R, °
Inverse elements: id=Ry;Re—=y T 2zv—id=FR; R,

Rs
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Consequences of the unique relation assumption
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,——————ffét———————————”"’;? g : Rs
Associativity: Ri; R Ra; Rs ¢
(Ri;R);Rs=Ri;(R; Rs)
= : . R2
Neutral elements: X Ri=Rii (R Rs) yo >z
R
R, °
Inverse elements: id=Ry;Re—=y T 2zv—id=FR; R,
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Follow-up assumption

Relations must have a group structure
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2. What is labeled union-find?



Labeled union-find example

Labeled union-find adds labels to edges of union-find

r
x:2/ \:4r—|—3
X z

y=x+1
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Labeled union-find example

Labeled union-find adds labels to edges of union-find

get _relation: finds the relation
between two variables

X =2r =4r+3
B get relation(z,x)

X €=rmemamemm z :Z:4r—1;(X:2r)_1
z=2x+3 =z=2x—-1
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Labeled union-find adds labels to edges of union-find

get _relation: finds the relation
between two variables

x =2r =4r+3
v=u+2 B get relation(z,x)

-
<

X €=rmemamemm z :Z:4r—1;(X:2r)_1
z=2x+3 v =z=2x-1
y=x+1 B get relation(z,u) = None
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Labeled union-find example

Labeled union-find adds labels to edges of union-find

Ex: add_relation(y,v,y = 3v)

u
— =4r+3 i
X 2/ \ + add_relation: adds a new relation
v=u-+2 between variables
v
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Labeled union-find example

Labeled union-find adds labels to edges of union-find

between variables
Ex: add_relation(y,v,y = 3v)

> U
X =2r =4r+3 add_relation: adds a new relation
v=u+2
v
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.
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Labeled union-find data structure

Labeled union-find

X Rooted forest with group operations on labels:
@1/‘ \ 52 Identity id: R
Rs/ \Ru Inverse -1: R - R
u v Compose ;- - RXR—>R

get_relation(n, m): add_relation(n, m, R):
Ry '™« Rm Ri "R Re
/ rn I'm

ST ] .

n» m R
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3. What relations can be used with labeled
union-find?



Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure
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Suitable abstract relations

Abstract relations R must both:
B Be a sound abstraction of relations v € R — P(V x V)
® Have a group structure

Suitable relations are injective functions (between equivalence classes)

Constant offset: y =x+ b for b € Z
Two variable linear equality: y =ax+bfora,be QorR, a#0
Modulo multiplication: y = ax + b mod 2°* for a, b € BVs,, a odd
XOR-Rotate relation: y = (x xor c) rot n for c € BVg4 and n € [0 : 63]
Parity comparison: x mod 2 1 y mod 2, for 1 € {=, #}

8/14



4. How does labeled union-find combine with
other domains?



Factorizing numeric information

Redundant numeric information on terms:

[0:4] [1:2]
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Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

[0:4] [1:2]

*2 +7 *3
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Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0: 4] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 47 kg
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Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0: 4] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 17 kg
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B find representative [ 4]
[10 : 17] @
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Factorizing numeric information

Redundant numeric information on terms: only store one per relational class

get_value(y +7): [0:2] [1:2]
B find representative a
B [0:4] via+7is [7:11] %o 47 kg

set_value(2y, [-4 : 4]) / add relation: e @
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B [4:4]via (*2)7tis [-2: 2]
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B propagate to sub/superterms [PLDI'24] »
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Factorizing numeric information

Redundant numeric information on terms: only store one per relational class
Group action to update values via relations:

A RxIT—1
get_value(y +7): [0:2] [1:2]
B find representative a
m A(+7, [0:4]) =7 11] ¥ e e
set_value(2y, [-4 : 4]) / add relation: e @

® find representative
= A((*2)7, [4:4)) = [2: 2] &
B intersect with old value

B propagate to sub/superterms [PLDI'24] »
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Exact actions

To avoid losing precision, actions must be exact:
B Constant offset with intervals is exact:
Aly=x+b, [m: M) & [m+b: M+ b]
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Exact actions

To avoid losing precision, actions must be exact:

B Constant offset with intervals is exact:

Aly=x+b, [m: M) & [m+b: M+ b]
B TVPE with intervals is exact (on R or Q):
Aly =ax+ b, [m: M]) £ [am + b : aM + b]
B No exact action for constant offset or TVPE with bitwise abstraction:
A(+0b011, 0b007) = 0b?77.
B XOR-Rotate relation has an exact action with bitwise abstraction:

A(y = (x xor ¢) rot k,by---b,) = d---d,
with d,' £ b,'+k XOr Cjyk

But inexact with intervals.
10/14



Other applications

m Factorize relational domains: only store relations between
relational classes:

Aly=x+bz+x<c)2z+y<c—b

11/14



Other applications

m Factorize relational domains: only store relations between
relational classes:

Aly=x+bz+x<c)2z+y<c—b

: L id
= Discover all equalities, i.e. all (x,y) such that x = y

11/14



5. Can we use an imperative structure in an
abstract interpreter?



U '\iiﬁki,l,

Only add flow insensitive relations

Flow insensitive relations: true no matter where in the program.
Especially common when running the analysis on an SSA form [PLDI'24].

When building terms:

+1
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Example: relating loop counters
int i =0, j = 4;
while(i < N) {

i+=1;

J =3
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Example: relating loop counters
int i =0, j = 4;
while(i < N) {

i+=1;
J =3

+

Non-relational: i € [N; N], j € [4;+¢],j =1 mod 3

With union-find: j =3i+4soj € [3N+4:3N+4].

13/14



Conclusion

Labeled union-find data structure:

® Extension of union-find with edge labels

B Labels must have a group structure

Labeled union-find domain:
® Fast weakly relational domain (easy transitive closure)
® Only stores injective relations

® Can combine with other domains to store information per class

Implemented as part of the Codex static analysis library (https://codex.top)
and the Colibri2 solver (https://colibri.frama-c.com).

Postdoc positions: matthieu.lemerre@cea.fr
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