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We introduce a new family of abstractions based on a data structure that we call labeled union-find, an extension
of the classic efficient union-find data structure where edges carry labels. These labels have a composition

operation that obey the group axioms. Like union-find, the labeled version can efficiently compute the

transitive closure of a relation, but it is not limited to equivalence relations; it can represent any injective

transformation between equivalence classes, which includes two-variables per equality (TVPE) constraints of

the form 𝑦 = 𝑎 × 𝑥 + 𝑏. Using abstract interpretation theory, we study the properties deriving from the use of

abstract relations as labels, and the combination of labeled union-find with other representations of constraints,

allowing both improvements in precision and simplification of existing constraints. Due to its efficiency, the

labeled union-find abstractions could find many uses; we use it in two use cases, program analysis based on

abstract interpretation and constraint solving for SMT, with encouraging preliminary results.

CCSConcepts: • Software and its engineering→ Formal software verification; •Theory of computation
→ Abstraction; Equational logic and rewriting.

Additional Key Words and Phrases: Relational abstract domain, Labeled union-find, Abstract interpretation

1 Introduction
In abstract interpretation, it is common to classify numerical domains into two extremes: the

relational polyhedra abstract domain [Cousot and Halbwachs 1978], expressing conjunction of

linear equalities, which is slow and precise; and the non-relational box abstract domain [Cousot

and Cousot 1977], expressing the range of values of each variable independently, fast but imprecise.

In the middle, one can find weakly-relational abstract domains, of intermediate expressivity (they

only represent binary relations between variables) and cost, such as octagons [Miné 2006]. These

weakly relational domains are already quite costly, requiring O(|X|2) storage cost per abstract state,
and O(|X|3) for the transitive closure computation (where |X| is the number of program variables).

Therefore, using them makes an analysis several orders of magnitude slower [Nazaré et al. 2014]. A

long line of research was thus devoted to mitigating this cost. The general emerging strategy is to

split a monolithic relational domain into independent clusters, either by exploiting existing loose

coupling between variables [Gange et al. 2021; Jourdan 2016; Singh et al. 2015, 2018] or by forcibly

decoupling the clusters [Blanchet et al. 2003; Heo et al. 2016; Venet and Brat 2004]. Note that even

with these mitigations, many analyzers do not enable these domains by default due to their cost.

One approach that was seldom explored (except by Cox et al. [2015]; Halbwachs et al. [2006])

is, on the contrary, to exploit tight coupling between variables to make relational domains more

efficient. For instance, maintaining equality (the tightest possible relation) between variables is

cheaply done using the highly efficient union-find data structure. Furthermore, it allows for possible

speed-up by grouping equal variables using and performing a quotient on other constraints.

We generalize this technique to relations other than equivalence relations, by describing
a new family of very cheap (weakly-)relational abstract domains based on an extension
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of the union-find data structure that we call labeled union-find. Starting from a general

formalization of weakly-relational domains (Section 2), we derive our key ingredients for efficient

weakly-relational domains: constraint elimination (finding constraints that can be removed without

changing the concretization, and re-computing them dynamically), and a unique label hypothesis
that allows efficient computation of transitive closure (which is the performance bottleneck).

To efficiently implement this new family of abstract domains, we use the labeled union-find
data structure (Section 3). We rediscovered this data structure, which was previously introduced

by Frühwirth [2007]. Labels in a labeled union-find can be composed following the group laws

(associativity, existence of a neutral element and inverse), and we argue that group laws naturally

derive from the unique label hypothesis. We then provide and prove correct an implementation of

the main labeled union-find operations, and study an extension where information is attached to

each class of related elements. This structure may well find other applications outside our use case.

For program analysis, we use labeled union-find domains to represent relations between variables.

The labels (abstract relations) must thus simultaneously be sound and obey the group axioms.

By studying the conjunction of these two constraints (Section 4), we discover that our labeled

union-find data structure represents injective transformations between equivalence classes. This
allows not only to dismiss unsuitable abstract relations, but also to easily find new ones. We propose

different examples throughout the paper, including:

The two-values per equality abstract domain (TVPE): encoding affine relations 𝑦 = 𝑎 × 𝑥 +𝑏
between two integer, rational or real variables 𝑥 and 𝑦;

The modular two-values per equality abstract domain: encoding affine relations𝑦 = 𝑎×𝑥+𝑏
between two bitvectors using modulo arithmetic, but only in the case where 𝑎 is odd;

Xor and rotations: of the form 𝑦 = (𝑥 xor 𝑐) rot 𝑛 between two bitvectors, which encodes

bitwise negation and many shifts;

Invertible matrix multiplications: relations 𝑦 = 𝑎 × 𝑥 + 𝑏 where 𝑦 and 𝑥 represent vector of

values in a field, 𝑎 an invertible constant matrix, and 𝑏 a constant vector;

Equivalence between sequences modulo relocation: [Ait-El-Hara et al. 2024b] are relations
𝑦 =reloc(𝑐 ) 𝑥 where two sequences have equal contents but their indices are shifted by 𝑐;

Conversions between bitvectors and their signed or unsigned representation ;

Next, we examine the many interesting combinations between labeled union-find and other

abstractions, such as the non-relational abstraction (Section 5), general weakly-relational abstrac-

tions, equalities (Section 6.1) and linear equalities (Section 6.2). We study two kinds of interactions:

standard reduced product, but also constraint factorization, where we “quotient” existing relations

using the relational class of related variables in the labeled union-find.

Throughout this paper, we use abstract interpretation [Cousot and Cousot 1977] as an invaluable

theory to reason about precision gaps between the representations of operations in data structures

(the abstract), and how they affect the set of known facts (the concrete). This theory is at the heart of

all our theorems and proofs (Appendix B). Our labeled union-find domain can be used as a standard

flow-sensitive abstract domain, and we provide a join operation for it in Appendix A. However,

this does not mean that labeled union-find is restricted to program analysis: abstract interpretation

is a general theory of program approximation, and indeed labeled union-find abstractions could

also be used in decision procedures, datalog engines [Nappa et al. 2019; Sahebolamri et al. 2023],

constraint solvers, model checkers, etc. In Section 7, we present early implementation results in

both a non-relational abstract interpreter, where it has a low performance impact and offers some

precision gains, and in a constraint solver, where it allows to easily add new capabilities to the

solver without compromising performance across a large set of benchmarks.
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This is the technical report accompanying the published paper [Lesbre et al. 2025b]. The imple-

mentation is available in the software artifact [Lesbre et al. 2025a].

2 Faster Relational Abstract Domains by Assuming Unique Labels
This section provides a high-level formal presentation of weakly relational domains [Miné 2004;

Schwarz et al. 2023], which represent conjunctions of binary abstract relations between pairs of

variables. Then, we introduce and motivate the unique-label hypothesis, that improves performance

by enabling fast transitive closure computation in a union-find like structure.

2.1 Weakly Relational Domains
2.1.1 Abstract Relations. We consider abstract relations, which are (generally) a finite and com-

putable representation of a concrete mathematical relation. Formally, suppose we are given a set

of values 𝑣 ∈ V (like integers Z or word-sized bitvectors BV64). Then, an abstract relation R♯ ∈ R♯

represents a concrete relation via a concretization operator 𝛾R♯ ∈ R♯ → P (V × V).
Example 2.1 (Constant difference abstract relation). Suppose V = Z, the set of integers. We can

use a number 𝑘 to represent a relation stating that the difference between two values is 𝑘 . Formally,

we have R♯ ≜ Z and 𝛾R♯ (𝑘) ≜
{
(𝑧1, 𝑧2) ∈ Z2

�� 𝑧2 − 𝑧1 = 𝑘
}
.

Example 2.2 (Interval difference abstract relation). We can extend Example 2.1 by constraining the

difference to be in an interval, instead of being in a single value. In that case, we use R♯ ≜ Z × Z
and (denoting intervals as [𝑎;𝑏]): 𝛾R♯ ( [𝑎;𝑏]) ≜ {(𝑧1, 𝑧2) ∈ Z | 𝑎 ≤ 𝑧2 − 𝑧1 ∧ 𝑧2 − 𝑧1 ≤ 𝑏}.

Miné [2002] provides more examples of abstract relations of the form 𝑧2−𝑧1 ∈ 𝑆 . But there are also

weakly relational domains outside this class; for instance, using pairs of intervals ( [𝑎;𝑏], [𝑐 ;𝑑]) with
𝛾R♯ ( [𝑎;𝑏], [𝑐;𝑑]) = {(𝑧1, 𝑧2) ∈ Z | 𝑎 ≤ 𝑧2 − 𝑧1 ≤ 𝑏 ∧ 𝑐 ≤ 𝑧2 + 𝑧1 ≤ 𝑑}, we can represent octagons

[Miné 2006]. Another example is the following one:

Example 2.3 (Bitvector comparison abstract relation). Suppose V = BV𝑛 (the set of bitvectors of

length 𝑛). We can use a tristate number [Vishwanathan et al. 2022] (a kind of bitvector whose bits

are numbers in the set {0, 1, ?}, where ? represents an unknown value; often used to track known

bits in static analyses [Miné 2012; Regehr et al. 2005] or constraint solvers [Chihani et al. 2017;

Michel and Hentenryck 2012]) to represent whether the bits at the same index in a bitvector are

equal, are different, or if we don’t know their relation. Formally, we have R♯ ≜ {0, 1, ?}𝑛 , and
𝛾R♯ (R♯) ≜

{
(𝑣,𝑤)

�� ∀ 𝑖, 0 ≤ 𝑖 < 𝑛 ⇒ (R♯

𝑖
= 0 ⇒ 𝑣𝑖 = 𝑤𝑖 ) ∧ (R♯

𝑖
= 1 ⇒ 𝑣𝑖 = ¬𝑤𝑖 )

}
2.1.2 Operations on Abstract Relations. We will need some operations on abstract relations, which

perform sound over-approximation of the composition (;), inversion (·−1), and identity relation.

Formally, we require these operations to fulfill the following soundness rules:

id♯ ∈ R♯ inv♯ ∈ R♯ → R♯ · ;♯ · ∈ R♯ × R♯ → R♯

𝛾R♯ (id♯) ⊇ {(𝑣, 𝑣) | 𝑣 ∈ V} (HIdentitySound)

𝛾R♯ (inv♯ (R♯)) ⊇ 𝛾R♯ (R♯)−1 ≜ {(𝑣2, 𝑣1) | (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)} (HInverseSound)

𝛾R♯ (R♯

1
;♯ R♯

2
) ⊇ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
) ≜

{
(𝑣1, 𝑣3)

�� ∃ 𝑣2, (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
) ∧ (𝑣2, 𝑣3) ∈ 𝛾R♯ (R♯

2
)
}

(HComposeSound)

When we can replace the ⊇ sign in the above rules with an equality, the operation is said to be

both sound and exact (i.e., 𝛾-complete [Giacobazzi and Quintarelli 2001; Ranzato 2013]).

Example 2.4. In the constant and interval difference abstract relations, we have id♯ ≜ 0 (or (0, 0));
inv♯ (R♯) = −R♯

; and R♯

1
; R♯

2
≜ R♯

1
+ R♯

2
. In the bitvector comparison relation, we have id♯ ≜ 0;

inv♯ (R♯) = R♯
; and R♯

1
; R♯

2
≜ R♯

1
xor R♯

2
. All of these operations are both sound and exact.
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Another operation that we will need over abstract relations is precision ordering ⊑R♯ . Intuitively,

R♯

1
⊑R♯ R♯

2
means that R♯

1
represents a tighter constraint than R♯

2
, which is formalized as follows:

· ⊑R♯ · ∈ P
(
R♯ × R♯

)
R♯

1
⊑R♯ R♯

2
⇒ 𝛾R♯ (R♯

1
) ⊆ 𝛾R♯ (R♯

2
) (HOrderSound)

Example 2.5. The constant different abstract relations form a flat lattice: different elements

cannot be compared in terms of precision. For the interval difference abstract relation, we have

(𝑎1, 𝑎2) ⊑R♯ (𝑏1, 𝑏2) if and only if 𝑏1 ≤ 𝑎1 and 𝑎2 ≤ 𝑏2. The precision ordering between bitvector

comparison relations is the component-wise ordering of the three-valued lattice (0 ⊑ ? and 1 ⊑ ?);
i.e., R♯

1
⊑R♯ R♯

2
means that at each index, R♯

2
either contains the same “bit” as R♯

1
, or contains ?.

From the order ⊑R♯ , we can define the meet ⊓R♯ ∈ R♯ × R♯ → R♯
as the smallest over-

approximation of intersection of relations, and the join ⊔R♯ as the smallest over-approximation of

the union. Note that the meet ⊓R♯ is both sound and exact in all our examples.

2.1.3 Weakly Relational Abstract Domains. Suppose that we want to maintain binary relations

between variables 𝑥,𝑦 ∈ X. A natural way to do so is to use a labeled directed graph, whose nodes

are variables. An edge from 𝑥 to 𝑦 (if present) is labeled with the abstract relation between 𝑥 and 𝑦.

If there is no edge from 𝑥 to 𝑦, then the relation between 𝑥 and 𝑦 is not constrained.

Formally, we define elements of a weakly-relational abstract domain W ∈ W♯ ≜ (X × X) ⇀ R♯

as a partial map from variable pairs to their possible abstract relation. We do not allow for multiple

edges between a pair of variables, as they can be replaced with a single edge carrying the meet of

all labels; especially when the meet operation is exact. The meaning of a weakly relational domain

is the set of all the valuations (mapping from variables to values, noted 𝜎) that fulfill its constraints:

𝛾W♯ ∈ W♯ → P (X → V)
𝛾W♯ (W) ≜

{
𝜎 ∈ X → V

�� ∀ (𝑥,𝑦) ∈ domW, (𝜎 [𝑥], 𝜎 [𝑦]) ∈ 𝛾R♯ (W[𝑥,𝑦])
}

We can also define a precision ordering · ⊑W♯ · ∈ P
(
W♯ × W♯

)
on weakly relational domains.

Intuitively, W is more precise than W′
if W has more edges than W′

(i.e., more constraints

between variables), and if the labels on the edges of W are more precise (i.e., stricter constraints):

W ⊑W♯ W′ ≜ ∀ (𝑥,𝑦) ∈ domW′, (𝑥,𝑦) ∈ domW ∧W[𝑥,𝑦] ⊑R♯ W′ [𝑥,𝑦]
This operation is sound, in that more precise elements concretize to smaller sets of valuations.

2.1.4 Constraint Propagation (Reduction). We can now describe one of the central operations

in a weakly relational abstract domain: constraint propagation. Its goal is to find more precise

constraints onW (i.e., to findW′
such thatW′ ⊑W♯ W). Constraint propagation must not invent

arbitrary constraints, but must deduce them from the existing ones; i.e.W′
andW must represent

the same set of values: 𝛾W♯ (W′) = 𝛾W♯ (W). In abstract interpretation, such an operation, that

improves abstract precision but does not change the concrete set of values, is called a reduction.
We write W ⊨ 𝑥 R♯ 𝑦 the predicate “ W implies that R♯

holds between 𝑥 and 𝑦”. Here are its

core rules. Their soundness derives from the definition.

W ⊨ 𝑥 W[𝑥,𝑦] 𝑦
Base

W ⊨ 𝑥 id♯ 𝑥
Refl

W ⊨ 𝑥 R♯ 𝑦

W ⊨ 𝑦 (inv♯ (R♯)) 𝑥
Symm

W ⊨ 𝑥 R♯

1
𝑦 W ⊨ 𝑦 R♯

2
𝑧

W ⊨ 𝑥 (R♯

1
;♯ R♯

2
) 𝑧

Trans

W ⊨ 𝑥 R♯

1
𝑦 W ⊨ 𝑥 R♯

2
𝑦

W ⊨ 𝑥 (R♯

1
⊓R♯ R♯

2
) 𝑦

Meet

They state that in addition to constraints already in W, (𝑥, 𝑥) is constrained by the concrete

equality; that we can use symmetry and transitivity to improve constraints; and that when two

constraints exist between the same variables, they can be combined using the meet ⊓R♯ . Such rules

are at the heart of abstract domains like DBM [Miné 2001] and octagon [Miné 2006].
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A weakly-relational element W can be improved by changing its values to more precise deduc-

tions obtained by these rules. When it can no longer be improved, it is saturated. Starting from

an arbitrary element W and applying constraint propagation rules until saturation leads to a

unique
1
element, that we denoteW★

following Miné [2004]. In practice,W★
can be built using

the Floyd-Warshall transitive closure algorithm [Schwarz and Seidl 2023]. Figure 1 presents an

example of saturation on a small graph.

𝑥

𝑦 𝑧

[1; 2] [-5; 8]

[-9; -3]

𝑥

𝑦 𝑧

[1; 2]
[4; 8]

[-2; -1]
[-8; -4]

[-7; -3]

[3; 7]

[0; 0]

[0; 0] [0; 0]
Fig. 1. InitialW and saturatedW★

abstract elements.

The problem with this operation is that af-

ter saturation, if |X| represents the number of

variables, then the storage cost is O(|X|2); fur-
thermore, the computational cost to compute

the transitive closure is O(|X|3). These supra-
linear costs prevent the use of weakly relational

domains with large number of variables, and

requires mitigation. Note that not performing

saturation is possible [Logozzo and Fähndrich

2008], but at the expense of precision; for best precision, it is in particular required to saturate

abstract elements before they are joined [Miné 2006].

2.1.5 Constraint Elimination. One approach to reduce storage cost is to “reverse” constraint propa-

gation: refrain from storing any constraints that can already be deduced from existing constraints.

Instead, lazily computeW★[𝑥,𝑦] as needed when the constraint between 𝑥 and 𝑦 is queried. We

refer to this method as constraint elimination. Eliminating constraints requires a careful imple-

mentation of abstract domain operations to avoid losing precision (as removing constraints means

being less precise following the definition of ⊑W♯ ), in particular when joining abstract elements.

Some constraints are easy to eliminate. For example, with reflexive constraints, we do not need

to store W[𝑥, 𝑥] unless it is more precise than id♯
. Then when W[𝑥, 𝑥] is queried, we return it if

present, or id♯
otherwise. In the case of the difference or bitvector comparison abstract relations,

id♯
is maximally precise, so we can eliminate every reflexive constraint. Similarly, for symmetric

constraints, we can remove W[𝑥,𝑦] when inv♯ (W[𝑦, 𝑥]) ⊑R♯ W[𝑥,𝑦]. For example, with the

difference and bitvector inequality relations, inv♯
is exact so W[𝑥,𝑦] and W[𝑦, 𝑥] carry the same

information. Thus, only one has to be stored (as done, for instance, in DBMs [Miné 2001]).

The difficulty comes from eliminating constraints that are recovered by transitivity. We can

remove any constraint W[𝑥, 𝑧] such that W[𝑥, 𝑧] = W[𝑥,𝑦] ;♯ W[𝑦, 𝑧] without affecting the

concretization. However, recomputingW[𝑥,𝑦] dynamically when transitive constraints have been

eliminated would be costly, as we basically have to recompute the full transitive closure.

2.2 An Assumption for Efficient Transitive Closure
To remedy this problem, we introduce the central assumption of this article. We call it the unique-

label property, but note that this is close to the notion of commutative diagram in category theory.

Assumption 1. We consider only the W ∈ W♯
such that, for all 𝑥,𝑦 ∈ X, there exists an R♯ ∈ R♯

,

such that for all paths ⟨𝑥, 𝑥0, . . . , 𝑥𝑛, 𝑦⟩ inW: W[𝑥, 𝑥0] ;♯ W[𝑥1, 𝑥2] ;♯ . . . ;♯ W[𝑥𝑛, 𝑦] = R♯
.

Introducing Assumption 1 solves our problem: instead of performing a costly transitive closure

to computeW★[𝑥,𝑦], it suffices to compose the relations on any path. We can massively eliminate

constraints: instead of storing a complete graph, one can instead store a spanning tree, i.e. keep

only constraints necessary for the graph to be connected (Figure 2).

1
If there were two distinct saturated elements W1 and W2, we could build W′ = W1 ⊓ W2 such that W′ ⊑W♯ W1 and

W′ ⊑W♯ W2, which contradicts either that W1 and W2 are distinct, or that they are both fully saturated.
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𝑦

𝑧

𝑢 𝑣

𝑥

𝑦

𝑧

𝑢 𝑣

𝑥

Fig. 2. From saturated

to minimal constraints.

Implementations of ourweakly-relational abstract domainmustmaintain

a spanning tree whose edges carry an abstract relation, while new edges

are added and the relation between pairs of variables are queried. This is

similar to the dynamic connectivity problem on graphs, except that we also

maintain information on the edge. Hence, the data structure that we use,

the labeled union-find (Section 3), derives from the classical union-find

data structure, which efficiently solves the dynamic connectivity problem

[Tarjan 1975]. That is why we call this new kind of abstract domains labeled
union-find abstract domains.

Note that not allW satisfy Assumption 1. For instance in Figure 1, there

are two paths from 𝑥 to 𝑦 but [-5; 8] ;♯ [-9; 3] ≠ [1; 2]. In addition, there

is no way to turn this example into a W that would meet Assumption 1

without losing precision. We can find similar examples with the bitvector

comparison abstract relations. However, if we restrict R♯
to the constant

difference abstract relation, or to the subset of bitvector comparisons which

are constant (do not contain any ?), then anyW ∈ W♯
satisfies the assump-

tion.

In Section 3 we show that if allW ∈ W♯
satisfy the assumption, then ⟨R♯, ;♯⟩ must obey the group

axioms; in Section 4 we study the properties of sound abstract relations that obey the group axioms,

and show that such abstract relations must represent concrete injective functions (Theorem 4.3)
2
.

For example, the constant difference abstract relation corresponds to [𝑧 ∈ Z ↦→ 𝑧 + 𝑐]; and the

constant bitvector comparison abstract relation corresponds to [𝑏 ∈ BV𝑛 ↦→ 𝑏 xor 𝑐]. Actually, any
invertible function and their composition can be represented as abstract relations in our domains,

e.g. bitvector rotations (or any permutation), integer multiplication, integer exponentiation, etc.

Note that the abstraction may not be exact; if it is, then the function is bijective (Theorem 4.5).

𝑦

𝑧

𝑢

𝑣

𝑥

[7; 9]

[2; 5] [3; 6]

-1

-5

+2

Fig. 3. Factorizing constraints.

Finally, labeled union-find abstract domains can be used in con-

junction with other abstract domains for mutual improvements (i.e.,

as a reduced product). There are some technical difficulties, notably

when computing the join operation (Appendix A), as we do not want

to perform a full reduction. But another interesting use is constraint
factorization (Section 5.2). Similarly to the union-find data structure,

connected elements in a labeled union-find structure belong to a

relational class (the set of variables where each pair is related by one

of the relation in R♯
) and also have a representative element (the

root of the tree). The idea of constraint factorization is to eliminate

redundant constraints in other domains, by only keeping constraints

on the representative of each class. The constraints on the other elements in the class become

implicit, which reduces both space and computation time needed for constraint propagation.

Figure 3 describes an example of constraint factorization: we have partitioned the 5 variables into

two relational classes ({𝑧,𝑢} and {𝑦, 𝑥, 𝑣}); and we have a transitive closure of the weakly-relational
relation between representative elements (dashed line, using interval difference as abstract relation),

and non-relational abstraction on the representative element of the relational class (dotted line).

This representation carries the same information (i.e., has the same concretization) as the weakly-

relational/non-relational product on variables, but requires significantly less storage. In Section 5

2
Actually: an injective function between equivalence classes where the equivalence relation is 𝛾R♯ (id♯ ) , which is the

equality in the examples given in this section.
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we study the interaction between labeled union-find and other domains, and detail in particular

when constraint factorization is possible without losing precision.

3 Union-Find with a Group of Edges Labels
In this section, we discuss the labeled union-find data structure, which may find uses outside of

program verification. For this reason, we generalize our settings to arbitrary nodes and labels,

which may represent something else than variables constrained by abstract relations. We introduce,

however, an additional hypothesis that will assume in the rest of the paper, which is that labels

have a group structure; we justify this hypothesis in the next subsection.

3.1 Directed Graphs with Uniquely Labeled Paths
Let us consider (possibly infinite) directed graphs whose edges are labeled. Formally, we have a

set of nodes N, a set of edge labels L, and an edge predicate 𝑛1
ℓ−→ 𝑛2 ∈ L → P (N × N). Now, we

suppose that labels are equipped with an infix composition operator ;̂ ∈ L × L → L. This allows
defining the label of a path, which is the composition of labels on its traversed edges. Formally, we

define a path predicate

ℓ−→→∈ L → P (N × N) as the transitive closure of the edge predicate:

𝑛1
ℓ−→ 𝑛2 ⇒ 𝑛1

ℓ−→→ 𝑛2 (EdgePath) 𝑛1
ℓ1−→→ 𝑛2 ∧ 𝑛2

ℓ2−→→ 𝑛3 ⇒ 𝑛1
ℓ1 ;̂ℓ2−−−→→ 𝑛3 (PathTrans)

Following Assumption 1, we require that the label on every path between two nodes is unique:

∀ 𝑛1 𝑛2 ℓ ℓ
′, 𝑛1

ℓ−→→ 𝑛2 ∧ 𝑛1
ℓ ′−→→ 𝑛2 ⇒ ℓ = ℓ ′ (HUniqeLabel)

This implies that:

• Label composition on every path is associative: for a path 𝑛1
ℓ1−→→ 𝑛2

ℓ2−→→ 𝑛3
ℓ3−→→ 𝑛4, we

have both 𝑛1
ℓ1 ;̂(ℓ2 ;̂ℓ3 )−−−−−−→→ 𝑛4 and 𝑛1

(ℓ1 ;̂ℓ2 ) ;̂ℓ3−−−−−−→→ 𝑛4, thus ℓ1 ;̂ (ℓ2 ;̂ ℓ3) = (ℓ1 ;̂ ℓ2) ;̂ ℓ3.

• Labels of directed cycles are locally neutral: 𝑛1
ℓ1−→→ 𝑚

ℓ2−→→ 𝑚
ℓ3−→→ 𝑛2, implies that we

have both 𝑛1
ℓ1−→→𝑚 and 𝑛1

ℓ1 ;̂ℓ2−−−→→𝑚; therefore, ℓ1 ;̂ ℓ2 = ℓ1. Similarly, we have ℓ2 ;̂ ℓ3 = ℓ3.

Note that HUniqeLabel does not imply that composition is fully associative. It only shows

associativity for label composition along paths that exist in the graph. Similarly, a graph with

cycles does not imply the existence of a neutral element, only that the label of cycles is neutral for

composition relative to the labels of any paths that start or end in the cycle.

However, if we want the label uniqueness property to be true on any graph labeled with L, then
associativity of composition becomes mandatory (we can extend the original graph with all possible

paths). Furthermore, the label on every cycle must now truly be a neutral element, and all labels
must be invertible (since every path can be turned into a cycle, labeled by the neutral element: if

𝑛1
ℓ1−→→ 𝑛2 and 𝑛2

ℓ2−→→ 𝑛1, then ℓ1 ;̂ ℓ2 = id = ℓ2 ;̂ ℓ1). Associativity, existence of a neutral element and

of an inverse are the core axioms of group theory, and thus from now on we also assume:

Assumption 2. ⟨L, ;̂⟩ is a group, i.e. ;̂ is associative; there is a unique neutral (identity) element

id ∈ L; and each element ℓ is invertible (and we write inv (ℓ) ∈ L → L the inverse of ℓ).

We can now extend our path predicate using these elements to make it reflexive and symmetric:

∀ 𝑛, 𝑛
id−−→→ 𝑛 (PathRefl) ∀ 𝑛1 𝑛2 ℓ, 𝑛1

ℓ−→→ 𝑛2 ⇒ 𝑛2
inv(ℓ )
−−−−−→→ 𝑛1 (PathSym)

Remark. Assumption 2 does not necessarily imply HUniqeLabel (i.e., that Assumption 1 is met

on everyW). If (and only if) 𝑥 and 𝑦 are constant integers, there exists several suitable 𝑎, 𝑏 such

that 𝑦 = 𝑎 × 𝑥 + 𝑏 or 𝑦 = (𝑥 xor 𝑎) rot 𝑏. This implies that we have to detect conflicts when we

find two such relations to maintain HUniqeLabel, that we solve by propagating the information
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that 𝑦 and 𝑥 are constant in another domain and dropping at least one of the relations. Relatedly,

we may create new relations when we join pairs of constant values (Sections 5.1 and 7.2).

3.2 Union-Find over Groups of Edge Labels
3.2.1 A Minimal Data-Structure For Storing Relation Between Nodes. We are now interested in

a data structure that would allow retrieving, for any two nodes 𝑛1 and 𝑛2, the label ℓ such that

𝑛1
ℓ−→→ 𝑛2 when it exists, exploiting the properties of Section 3.1 to make this efficient. If this data

structure is a directed graph, one can retrieve this label as long as one undirected path exists from

𝑛1 to 𝑛2, by composing the labels on the edges on this path (and inverting them for reversed edges).

The most space-efficient topology for this data structure is that of a spanning forest. Indeed,

we only need to remember enough edges such that any connected nodes in the original graph

are still connected. Spanning forests correspond to such minimally-connected graphs. In a given

tree, the most efficient topology to compute the relations between nodes is a star topology, where

one distinguished element is the root and all other elements directly point to it. In this case, the

relations between any two nodes can be computed using at most one composition.

3.2.2 Lazy Path Compression. When interleaving the addition of new edges with the query of

the label between node pairs, it may not be optimal to immediately transform the graph to this

star topology. This problem is very related to the dynamic connectivity problem, that maintains

a spanning tree of a graph [Tarjan 1975]. If the labels were the unit type, then finding the label

between two nodes amounts to finding if two nodes are connected; which is done efficiently by

union-find. Our data structure is very similar. We just label the edges on the parent link of the

union-find, in order to remember the label as well as the connectivity information. We therefore

call it a labeled union-find data structure. It is a strict extension of union-find: classical union-find

is just the case where the labels are the unit type.

3.2.3 Labeled Union-Find. Figure 4 presents our implementation of labeled union-find, which is a

simple extension over classical union-find [Galler and Fischer 1964; Tarjan 1975]. The type of the

union-find U uses a mutable map structure to represent a partial function, which can be e.g. an

array, a hash table, or a pointer field inside a record corresponding to nodes.

The classic find function returns the representative element and performs path compression.

Our version also returns the label pointing to the parent, and composes labels during compression.

Our union takes as an extra argument the new relation between the two nodes being joined. It is

therefore no longer a pure union between equivalence classes, so we renamed it to add_relation.3

When joining two nodes which already have the same representative via a different relation, it calls

a user-supplied conflict function. Finally, we added the get_relation function. Given two nodes,

it returns the label of an edge connecting them (if they are in the same relational class), or ⊤ if not.

There are many variations of the union-find data structure [Patwary et al. 2010; Tarjan and

van Leeuwen 1984] that can be immediately translated to our labeled union-find variant. The one

we describe in Figure 4 uses randomized linking [Goel et al. 2014], which provides equivalent

performance than smarter linking strategies in practice.

Remark. Labeled union-find operations can be made polymorphic to handle relations between

nodes with type parameters (like ’a list in OCaml or std::vector<T> in C++). This does not

require changing the code, only updating the type signatures to those of Figure 4c, which require

existential types. For simplicity, we stick to monomorphic types in the rest of the paper.

3
Similarly, we use “relational class” instead of “equivalence class” for to the set of elements that have the same representative.
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nodes : N
map : U ≜ N ⇀ N × L

init ∈ unit → U
init () ≜ ∅

labels : L
id ∈ L

;̂ ∈ L × L → L
inv ∈ L → L

(a) Labeled union-find parameters.

find ∈ U × N → N × L
find (𝑈 , 𝑛) ≜ if 𝑛 ∉ dom𝑈 then (𝑛, id) else

let (𝑚, ℓ𝑚) = 𝑈 [𝑛] in let (𝑟, ℓ𝑟 ) = find (𝑈 , 𝑚) in
𝑈 [𝑛] ≔ (𝑟, ℓ𝑚 ;̂ ℓ𝑟 ); // optional path compression

(𝑟, ℓ𝑚 ;̂ ℓ𝑟 ) 𝑛

𝑚

𝑟

ℓ𝑚

ℓ𝑟

ℓ𝑚 ;̂ ℓ𝑟

add_relation ∈ U × N × N × L → unit
add_relation (𝑈 , 𝑛, 𝑚, ℓ) ≜

let (𝑟𝑛, ℓ𝑛) = find (𝑈 , 𝑛) in let (𝑟𝑚, ℓ𝑚) = find (𝑈 , 𝑚) in
if 𝑟𝑛 = 𝑟𝑚 then

if ℓ ≠ ℓ𝑛 ;̂ inv (ℓ𝑚) then conflict(𝑈 ,𝑚,𝑛, ℓ, ℓ𝑛 ;̂inv (ℓ𝑚))
else if rand() then𝑈 [𝑟𝑛] ≔ (𝑟𝑚, inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚)

else𝑈 [𝑟𝑚] ≔ (𝑟𝑛, inv (ℓ𝑚) ;̂ inv (ℓ) ;̂ ℓ𝑛)
𝑛 𝑚

𝑟𝑛 𝑟𝑚

ℓ
ℓ𝑛 ℓ𝑚

inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚

inv (ℓ𝑚) ;̂ inv (ℓ) ;̂ ℓ𝑛

get_relation ∈ U × N × N → L⊤
get_relation (𝑈 , 𝑛, 𝑚) ≜

let (𝑟𝑛, ℓ𝑛) = find (𝑈 , 𝑛) in let (𝑟𝑚, ℓ𝑚) = find (𝑈 , 𝑚) in
if 𝑟𝑛 = 𝑟𝑚 then ℓ𝑛 ;̂ inv (ℓ𝑚) else ⊤

𝑛 𝑚

𝑟𝑛
ℓ𝑛 ℓ𝑚

ℓ𝑛 ;̂ inv (ℓ𝑚)

(b) Labeled union-find definition. Some functions have been illustrated by small graphs. Full arrows are those

present in the map at the start; green dashed arrows are added during the function call; red dotted arrows

are removed by the function call; and dash-dotted arrows are never present in the map.

N⟨𝛼⟩, L⟨𝛼, 𝛽⟩
id ∈ L⟨𝛼, 𝛼⟩

;̂ ∈ L⟨𝛼, 𝛽⟩ × L⟨𝛽,𝛾⟩ → L⟨𝛼,𝛾⟩
inv ∈ L⟨𝛼, 𝛽⟩ → L⟨𝛽, 𝛼⟩

U ≜ N⟨𝛼⟩ ⇀ ∃ 𝛽.N⟨𝛽⟩ × L⟨𝛼, 𝛽⟩
find ∈ U × N⟨𝛼⟩ → ∃ 𝛽.N⟨𝛽⟩ × L⟨𝛼, 𝛽⟩

add_relation ∈ U × N⟨𝛼⟩ × N⟨𝛽⟩ × L⟨𝛼, 𝛽⟩ → unit
get_relation ∈ U × N⟨𝛼⟩ × N⟨𝛽⟩ → L⟨𝛼, 𝛽⟩⊤

(c) Signature of labeled union-find with type parameters.

Fig. 4. Labeled union-find parameters, definitions, and alternative polymorphic signatures.

Theorem 3.1. Let 𝑈 ∈ U be the union-find obtained by successive calls to init, add_relation,
find, and get_relation. If conflict does not modify 𝑈 , then, two nodes 𝑛 and𝑚 are related (i.e.,

there exists ℓ such that 𝑛
ℓ−→→ 𝑚 in 𝑈 ) if and only if they belong to the same tree (whose root is the

representative), and if and only if they would have been related in the graph whose edges are the
arguments of the successive calls to add_relation which did not trigger conflict. Furthermore:

(1) find terminates, returns the representative 𝑟 , and (𝑟, ℓ) ≜ find (𝑈 , 𝑛) ⇒ 𝑛
ℓ−→→ 𝑟 ;

(2) get_relation (𝑈 , 𝑛, 𝑚) = ℓ ≠ ⊤ if and only if 𝑛
ℓ−→→𝑚;

(3) get_relation (𝑈 , 𝑛, 𝑚) = ⊤ if and only if 𝑛 and𝑚 are not related;
(4) conflict is not called if and only if HUniqueLabel holds.

Proof. See proof in Appendix B.1 (page 29). □

Managing Conflicts. Conflicts occur when add_relation tries to add a new, different relation,

between two already related nodes. As we will see in the next section, the suitable abstract relations

for labeled union-find often form a flat lattice (Theorem 4.5), meaning no relation is more or less

precise than the other. Thus, we cannot replace the old conflicting relation by a more precise one.



195:10 Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François Bobot

initI ∈ unit → U-I get_info ∈ U-I × N → I
initI () ≜ (∅, [𝑛 ∈ N ↦→ ⊤I]) get_info ((𝑈 , 𝐼 ), 𝑛) ≜ let (𝑟, ℓ) = find (𝑈 , 𝑛) in A (ℓ, 𝐼 [𝑟 ])
add_info ∈ U-I × N × I → unit
add_info ((𝑈 , 𝐼 ), 𝑛, 𝑖) ≜ let (𝑟, ℓ) = find (𝑈 , 𝑛) in 𝐼 [𝑟 ] ≔ 𝐼 [𝑟 ] ⊓I A (inv (ℓ) , 𝑖)
add_relationI ∈ U-I × N × N × L → unit
add_relationI ((𝑈 , 𝐼 ), 𝑛, 𝑚, ℓ) ≜ same as add_relation, adding after each𝑈 [𝑟𝑏] ≔ (𝑟𝑎, ℓ ′) :

𝐼 [𝑟𝑎] ≔ 𝐼 [𝑟𝑎] ⊓I A (inv (ℓ ′) , 𝐼 [𝑟𝑏]) ;
del 𝐼 [𝑟𝑏];

Fig. 5. Operations added to labeled union-find to store information for all nodes at representatives.

However, in many instances conflicts imply extra information on the related values, but that

information cannot be represented by the labeled union-find. For example, when using the TVPE

relation (Example 4.6) which relates variables via linear equalities 𝑦 = 𝑎𝑥 + 𝑏, a conflict means we

have two separate lines in 2D space that contain the point (𝑥,𝑦) whose coordinates are the values
of both variables. Either these are parallel, and no suitable value exists (the state in unsatisfiable),

or these intersect, and computing their intersection will yield exact values for both variables. In

both cases, this information should be kept elsewhere, for instance in a non-relational domain.

3.3 Adding Information to Relational Classes
We now extend the classic use of the union-find data-structure which gathers information for the

whole equivalence class at the root node. Since the paths are not simple equalities, we will often

need to transform the information along the path. This is done via a group action from the labels to

some set of information I, meaning that each label can act as a function on those values. In this

case, the labeled union-find data structure can efficiently compute the information of any node

given the information of the representative elements of the data structure.

We can compress the representation of a map N → I from nodes to information, to a map from

representative elements of the relational class to information. We will explore several applications

of this technique in Section 5 and Section 6, such as constraint factorization (Section 2.2) where I is
a non-relational abstraction attached to a program variable (e.g., its interval or known bits).

3.3.1 Group Actions. A group action of the labels L is a function A ∈ L × I → I that satisfies:

∀ ℓ ℓ ′ ∈ L, ∀ 𝑖 ∈ I, A (ℓ ;̂ ℓ ′, 𝑖) = A (ℓ, A (ℓ ′, 𝑖)) (HActionCompose)

∀ 𝑖 ∈ I, A (id, 𝑖) = 𝑖 (HActionIdentity)

This implies that ℓ ↦→ A (ℓ, ·) is a homomorphism from the labels to the transformations over I.

3.3.2 Action of a Labeled Union-Find. Once provided with an action, we can lift a map that stores

information for representatives to a map storing information for all nodes (see function get_info
in Figure 5): just use the find operation on the labeled union find to retrieve the representative and

label, then apply the action using the label and the information on the representative. For instance

in Figure 3, to recover the interval on 𝑥 , the action for +2 would be the interval addition 𝜆𝑖.𝑖 + [2; 2],
that we apply on the interval [7; 9] of the representative element 𝑦 to find that 𝑥 ∈ [9; 11].
Formally, we change the type of our union-find U to add a second map, from representatives

to information: U-I ≜ U × (N ⇀ I). Figure 5 presents the new operations of the data structure to

manipulate information. In order to combine information from various source, we assume that the

set I is a meet-semilattice with a top element ⊤I representing the absence of information, and a

commutative associative meet operator ⊓I ∈ I × I → I which combines information from multiple

sources. First, the initI function creates a new empty union-find, initializing all information to
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top.
4
Then, get_info can be used to obtain the information attached to a given node. Information

can be added via add_info, which stores the information on the root by combining it (with ⊓I) with

existing information. Finally, add_relation also needs to be modified to combine the information

of both representatives being merged. One condition for this to work is that the action distributes

over the meet, so that combining information can be done in any order (this is in particular the

case when ⊓I and A are exact operations in an abstract domain). The following theorem states

that the data structure computes the correct information:

Theorem 3.2. Let (𝑈 , 𝐼 ) ∈ U-I be the result of a sequence of calls to add_relationI, get_info,
add_info after a first initI (), with (𝑚0, 𝑖0) . . . (𝑚𝑘 , 𝑖𝑘 ) the arguments passed to add_info. Then:

(1) the domain of 𝐼 is exactly the set of representatives of𝑈 (all accesses to 𝐼 are correct)
(2) if A distributes over ⊓I (i.e., A (ℓ, 𝑖 ⊓I 𝑗) = A (ℓ, 𝑖) ⊓I A (ℓ, 𝑗)), we have for all nodes 𝑛:

get_info ((𝑈 , 𝐼 ), 𝑛) =
/

I
0≤𝑝≤𝑘, 𝑛 and𝑚𝑝 in the same relational class

A
(
get_relation

(
𝑈 , 𝑛, 𝑚𝑝

)
, 𝑖𝑝

)
Proof. See full proof in Appendix B.1 (page 31). □

4 Suitable Abstract Relations
Our goal is to implement the weakly relational domains of Section 2 (W♯ ≜ X × X ⇀ R♯

) using

the labeled union-find structure seen in Section 3 (U ≜ N ⇀ N × L). From now on, we will have

N = X (the union-find represents relations between program variables) and L = R♯, id = id♯, inv =

inv♯, ;̂ = ;♯ (we use abstract relations as labels). Because we can turn elements of X ⇀ X × R♯
into

elements in X×X ⇀ R♯
, we can consider labeled union-find domains as weakly relational domains

(and reuse the concretization, definitions, and properties).

4.1 Properties of Abstract Relations as a Group
One question remains: what abstract relations can we use? Specifically, the operations on abstract

relations (id♯
, inv♯

, and ;♯) must simultaneously be sound (i.e., obey the rules of Section 2.1.2) and

obey the group axioms (Assumption 2). This implies surprising properties about abstract relations,

which allow both ruling out unsuitable candidates (e.g., interval difference cannot be used) but also

easily finding some, such as any composition of injective functions.

Lemma 4.1. inv♯ is exact: ∀ R♯ ∈ R♯, 𝛾R♯ (inv♯ (R♯)) = 𝛾R♯ (R♯)−1.
Proof. Uses involution of inv♯

andHInverseSound. For details, see Appendix B.2 (page 33). □

Lemma 4.2. 𝛾R♯ (id♯) ∈ P(V × V) is an equivalence relation between values.

Proof. See Appendix B.2 (page 33). □

Theorem 4.3. An abstract relation R♯ ∈ R♯ represents a concrete injective partial function
𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) between the equivalence classes of the 𝛾R♯ (id♯) relation.

Proof. See Appendix B.2 (page 33). □

Example 4.4 (Parity comparison). In many of our abstract relations, 𝛾R♯ (id♯) is equality on values.

A counter-example is parity comparison, where R♯ = {sameparity, differentparity}, with the

obvious meaning. Then, 𝛾R♯ (id♯ = sameparity) is an equivalence relation whose classes are the

set of odd and even values, and differentparity corresponds to [even ↦→ odd; odd ↦→ even].
4
To save space, we can avoid storing the tops in the map by having the map get operation return top on absent values.
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A common situation is when abstract relations represent not only partial injective functions, but

also total bijective functions (as is the case for the constant difference or the constant bitvector

comparison abstract relations). The following theorem shows that this is the case whenever the

abstract composition ;♯ is exact; furthermore, the concrete functions are then also a group.

Theorem 4.5. The following propositions are equivalent:
(1) 𝛾R♯ is a group morphism between

〈
R♯, ;♯, inv♯, id♯

〉
and the group of relations between

equivalence classes
〈
P

(
V/𝛾R♯ (id♯) × V/𝛾R♯ (id♯)

)
, ;, •−1, {(𝑣, 𝑣) | 𝑣 ∈ (V/𝛾R♯ (id♯))}

〉
;

(2) ;♯ is exact: ∀ R♯

1
R♯

2
∈ R♯, 𝛾R♯ (R♯

1
;♯ R♯

2
) = 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
);

(3) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is a total function;
(4) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is surjective;
(5) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is bijective.

Furthermore, if these hold then the lattice of abstract relations is flat: for all R♯

1
and R♯

2
such that

𝛾R♯ (R♯

1
) ⊆ 𝛾R♯ (R♯

2
), we have 𝛾R♯ (R♯

1
) = 𝛾R♯ (R♯

2
).

Proof. See Appendix B.2 (page 34). □

An important case where ;♯ is non-exact is the TVPE abstract domain on integers:

Example 4.6 (Two-values per equality). Take the abstract relations R♯ ≜ Q≠0 × Q, where Q is

the set of rationals, concretized as 𝛾R♯ (𝑎, 𝑏) ≜ {(𝑥,𝑦) ∈ V2 | 𝑦 = 𝑎𝑥 + 𝑏}. We name it TVPE by

similarity with the two-variables per inequality (TVPI) domain [Simon and King 2010]. There are

(at least) two variants of TVPE, one where V = Z and one where V = Q. When V = Z the abstract

composition is not exact. Consider the chain 𝑧
(2,0)
−−−→→ 𝑦

(0.5,0)
−−−−−→→ 𝑥 (i.e., 𝑧 = 2𝑦 ∧ 𝑦 = 0.5𝑥). In the

abstract, we have (2, 0) ;♯ (0.5, 0) = (1, 0) = id♯
, which implies 𝑧 = 𝑥 . However, in the concrete,

𝛾R♯ (2, 0) ;𝛾R♯ (0.5, 0) = {(𝑧, 𝑧) | 𝑧 ∈ 2Z}. In other words, the abstraction forgot that 𝑧 and 𝑥 are even

(this information could be stored in a non-relational domain, see Section 5).

4.2 Examples of Abstract Relations
The characterizations of Theorems 4.3 and 4.5 allow easily defining new suitable abstract rela-

tions: it suffices to consider invertible functions or their compositions. Thus, in addition to the

constant difference (Example 2.1), constant bitvector comparison (Example 2.3), parity comparison

(Example 4.4), and TVPE (Example 4.6) abstract relations, we can present some additional relations:

Example 4.7 (xor and rotation). Bitvectors (V ≜ BV𝑛) with the relations R♯ ≜ [0, 𝑛 − 1] × BV𝑛

can be concretized as 𝛾R♯ (𝑠, 𝑐) ≜ {(𝑥,𝑦) ∈ BV𝑛 | 𝑦 = (𝑥 xor 𝑐) rot 𝑠}. While such direct rotations

are uncommon, shifts are very common; and shifting a bitvector whose erased bits are known

can be transformed into a (xor with constant, rotation) sequence. This domain is the composition

of rotations with the constant bitvector comparison (Example 2.3) domain; it can be extended by

considering arbitrary bit permutations instead of just rotations.

Example 4.8 (Modular arithmetic). In Z/2𝑛Z, addition with a constant, or multiplication with an

odd value, are invertible operations. Thus, they can be seen as a TVPE abstract domain for modular

arithmetic. Multiplication with a power of two is not an invertible operation, but it can be encoded

as a xor + rotation if the erased bits are known (e.g. if there are no overflows).

Example 4.9 (Invertible matrix multiplications). If V is a vector of values in a field, then we can

relate different vector values using matrix multiplication, provided the matrices are invertible.

Example 4.10 (Casts). Casts from integer to reals, or from a bitvector to its signed/unsigned

integer value are invertible, and can thus be represented in an abstract domain. Combined with

constraint factorization (Section 5), it allows sharing constraints across variables of different types.
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5 Reduced Product with Non-Relational Domains
This section explains how the labeled union-find domain can be combined with non-relational

abstract domains, which store numeric information for each variable independently (concretizes to

X → P (V)). The relations in labeled union-find can be used to propagate this numeric information

across related variables.

5.1 Constraint Propagation
The classical way to have domains collaborate in abstract interpretation is through a reduced product

[Cousot and Cousot 1979]. Here we’ll combine a union-find U labeled with abstract relations R♯

together with a non-relational abstraction X → V♯
, mapping program variables to abstract values

V♯
. These abstract values concretize to sets of concrete values: 𝛾V♯ ∈ V♯ → P (V). We also suppose

V♯
equipped with standard lattice operators ⊔V♯ , ⊓V♯ , and ⊤V♯ . Examples of such single-value

abstractions include intervals [Cousot and Cousot 1977], bitwise/known bits abstraction [Michel

and Hentenryck 2012; Miné 2012; Regehr et al. 2005], or congruence [Granger 1989].

We can view the labeled union-find as a set of constraints to propagate to the single value

abstractions. For example, if we know that 𝑥 ∈ [0; 3], 𝑦 ∈ [2; 8] and that 𝑦 = 𝑥 + 1, we can refine

these values to 𝑥 ∈ [1; 3] and 𝑦 ∈ [2; 4]. Formally, this is done via the refine operator (which can

be defined for arbitrary 𝑛-ary constraints, not just those that meet the conditions of Section 4):

refine ∈ R♯ × V♯ × V♯ → V♯ × V♯

𝛾V♯ (fst(refine(R♯, 𝑣
♯

1
, 𝑣

♯

2
))) ⊇

{
𝑣1 ∈𝛾V♯ (𝑣 ♯

1
)
�� ∃𝑣2 ∈ 𝛾V♯ (𝑣 ♯

2
), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)

}
𝛾V♯ (snd(refine(R♯, 𝑣

♯

1
, 𝑣

♯

2
))) ⊇

{
𝑣2 ∈𝛾V♯ (𝑣 ♯

2
)
�� ∃𝑣1 ∈ 𝛾V♯ (𝑣 ♯

1
), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)

} (HRefineSound)

Where fst ∈ 𝑋 × 𝑌 → 𝑋 and snd ∈ 𝑋 × 𝑌 → 𝑌 are the canonical pair projections. Given two value

abstractions 𝑣
♯

1
and 𝑣

♯

2
and a relation R♯

, refine returns two new improved abstractions 𝑣
♯

1

′
and 𝑣

♯

2

′

which restrict 𝑣
♯

1
and 𝑣

♯

2
to values that satisfy 𝛾R♯ (R♯). We can use this to refine the values of all our

variables using the relations in the labeled union-find. Constraint propagation is done by picking a

constraint; using refine to improve the values of its variables; if any value has changed, adding all

constraints linking to its variable back into the worklist; and repeating until a fixed point is reached.

This is the basis of algorithms like AC-3 [Mackworth 1977] or HC-4 [Benhamou et al. 1999; Miné

2017]. Computing such a fixpoint may take a long time, which is why narrowing is useful to speed

it up in practice; a simple narrowing is to stop propagation after a fixed number of steps.

Example 5.1. In constraint programming, refine is often replaced by directly computing the set

of possible values for the variable that we want to update, and intersecting it with the previous

values. However, with abstract values, this leads to a loss of precision. For instance, consider

𝑥1 + 𝑥2 = 4 with the initial bitwise abstraction 0b00?0 for both 𝑥1 and 𝑥2. Then, the most precise

implementation for refine deduces that 𝑥1 = 𝑥2 = 2 = 0b0010, but computing possible values for

𝑥2 from the values of 𝑥1 will yield 0b0??0, which returns 0b00?0 after intersection with 0b00?0.
As explained by Miné [2017], applying several maximally precise abstract operations is less precise

than applying the best abstraction of the combination of these operations.

Constraint propagation should be performed any time a new constraint is added to the product:

either a new binary relation in U, or a more precise value abstraction in X → V♯
. In practice, this

usually happens after conditionals in the program, when the condition is assumed to be true or

false depending on the branch taken.

In theory, for maximal precision, we would start by saturating the graph of relations before

performing constraint propagation. However, this undermines the main strength of labeled union-

find: minimizing the number of stored relations. Luckily, the following theorem shows that when
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refine is exact (replace ⊆ by = inHRefineSound), constraint propagation on the minimal spanning

tree is equivalent to constraint propagation on the saturated graph.

Theorem 5.2. If refine is exact then, for all states (𝑈 ,𝑀) ∈ U × (X → V♯) on which we

performed constraint propagation, and for all edges 𝑥
R♯

−−→→ 𝑦 in the saturated graph of 𝑈 , if we let
(𝑣 ♯

1
, 𝑣

♯

2
) ≜ refine(R♯, 𝑀 [𝑥], 𝑀 [𝑦]), we have 𝛾V♯ (𝑀 [𝑥]) ⊆ 𝛾V♯ (𝑣 ♯

1
) and 𝛾V♯ (𝑀 [𝑦]) ⊆ 𝛾V♯ (𝑣 ♯

2
).

Proof. By structural induction on 𝑥
R♯

−−→→ 𝑦, full proof in Appendix B.3 (page 35). □

The reverse reduction, improving labeled union-find from the non-relational domain, is less

common. One exception is when two variables are constant, in which case we can generally deduce

the abstract relation between these variables (e.g. using the constant offset or bitvector comparison

relation). Note that sometimes there is a large (xor-rotate) or infinite (TVPE) number of such

relations. These reductions are typically not useful, except when joining two pairs (𝑢1,𝑚1) and
(𝑢2,𝑚2) of abstract elements, where some variables no longer are constant. For instance, using the

TVPE domain we can compute {𝑥 = 2, 𝑦 = 5} ⊔ {𝑥 = 3, 𝑦 = 7} = {𝑥 = [2; 3];𝑦 = [5; 7];𝑦 = 2𝑥 + 1}.

5.2 Map Factorization
As hinted by Figure 3, the previous reduction can be obtained more efficiently by factorizing

the non-relational map into the labeled union-find, i.e., by attaching abstract values only to the

representative element of relational classes (and not to every variable). This uses the results of

Section 3.3, where the info that we associate with relational classes will be the abstract value, so

here I = V♯
and ⊓I = ⊓V♯ .

Factorization requires a group action A ∈ R♯ × V♯ → V♯
to transform the abstract value along

an edge. In practice, A(R♯, ·) is an abstraction of the concrete injective function represented by R♯

that operates on abstract values. For instance, when using an interval value abstraction with the

constant difference abstract relation, then the action is given by A (𝑘, [𝑎;𝑏]) ≜ [𝑘 ;𝑘] + [𝑎;𝑏]. It
uses interval addition, as a lifting for integer addition on intervals. Formally, this is expressed via a

soundness hypothesis on A:

∀ 𝑣 ♯ R♯, 𝛾V♯ (A(R♯, 𝑣 ♯)) ⊇ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)} (HActionSound)

When the above ⊇ is replaced by equality, we say the action is exact. Actions can be understood as

a simplified version of refine:

Lemma 5.3. If refine satisfies HRefineSound, thenA(R♯, 𝑣 ♯) ≜ fst(refine(R♯,⊤V♯ , 𝑣 ♯)) satisfies
HActionSound. If refine is exact (HRefineSound with ⊇ replaced by =), then so is A.

Proof. See proof in Appendix B.3 (page 36). □

In what follows, we make two assumptions to simplify the presentation of our results, with the

complete statements deferred to Appendix B.3. The first is that 𝛾V♯ is injective: there are no two

abstract values with the same concretization. This is not a strong constraint, as we can satisfy it by

taking the quotient of the abstract domain by the equivalence relation “same concretization” (this

is the usual construct to transform a Galois connection to a Galois insertion). Moreover, most value

abstractions, like the bitwise and interval abstractions, naturally have an injective 𝛾V♯ (provided

there is a single bottom element). The second assumption is that 𝛾R♯ (id♯) is equality, which has

been true in almost all the presented examples.

Just like in Section 4, combining the action hypotheses with soundness narrows down the possible

candidates. Namely, we can show that being an action is equivalent to being exact:
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Lemma 5.4. Assume any of the points of Theorem 4.5 hold. If A satisfies HActionSound then A is
exact (we can replace ⊇ by = in HActionSound) if and only if it is a group action.

Proof. See proof in Appendix B.3 (page 37). □

Example 5.5. The existence of an exact action implies that the precision loss seen in Example 5.1

cannot occur. Indeed, defining it requires a precise addition on a bitwise abstraction. But, since

addition propagates information across bits, a single unknown bit ? in the arguments can lead to

multiple ? in the result. Thus, composing a constant addition with its inverse loses precision, while

an action should return the initial value unchanged.

In practice, this means that wemust use compatible abstract relations and values. For instance, the

interval abstraction works well with constant difference or TVPE (since addition and multiplication

by constants on intervals is exact), and bitwise abstractions work well with the xor-rotate abstract

relations (because xor and rotation on bitwise abstractions is also exact).

The following theorem can be combined with Theorem 3.2 to prove that map factorization is as

precise as performing full constraint propagation:

Theorem 5.6. If A and ⊓V♯ are both sound and exact then:

∀ 𝑣
♯

1
𝑣
♯

2
R♯, A

(
R♯, 𝑣

♯

1
⊓V♯ 𝑣

♯

2

)
= A

(
R♯, 𝑣

♯

1

)
⊓V♯ A

(
R♯, 𝑣

♯

2

)
Proof. See proof in Appendix B.3 (page 39). □

Factorization both takes less memory space and allows for faster operations. The memory benefit

comes from the values removed from the value map. Propagation is also faster since updating a

single value updates all variables in the same relational class in constant time. Using AC-3 and no

factorization we would have tried propagating constraints between every pair of variables in the

class; thus we save O(𝑛2) operations where 𝑛 is the size of the relational class.

Remark. Factorization can lead to detecting a bottom state late. Consider the graph 𝑥
×0.5−−−→→ 𝑦. If

we change the value of 𝑦 to only include odd integers, then 𝑥 has no valid value, so the whole

state is bottom. In Section 5.1, this would be detected immediately since changing a value triggers

constraint propagation. With the factorized map however, this will only be detected when accessing

𝑥 . Note that this only happens when we are not in the case of Theorem 4.5: the problem comes

from the fact that the function induced by ×0.5 is not total, but only defined on even integers.

6 Reduced Product with Relational Domains
In this section, we focus on the interaction between labeled union-find domains and other relational

domain. Specifically, we only examine the inter-reduction procedures since the join operation

seems currently impracticable. We focus on two important communication channels [Cousot et al.

2006] between abstract domains, equalities and abstract relations. Note that we already discussed

combination with weakly-relational domains in Section 2, and do not discuss it more here.

6.1 Labeled Union-Find and Equivalence Relations
We can update the labeled union-find structure to detect new equalities between variables (actually,

we can detect the id♯
relation, which is generally the equality). Equality is an important commu-

nication channel not only when combining decision procedures (e.g. Nelson-Oppen), but also in

program analysis [Cousot et al. 2006; Lemerre 2023; Rosen et al. 1988].

One issue is that labeled union-find can prove identity between pairs of variables when queried

using get_relation, but it does not automatically detect the list of all identities. For instance,

if we know that 𝑦 = 𝑥 + 2 and 𝑧 = 𝑥 + 2, we will not discover 𝑦 = 𝑧 unless we ask for
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// Called when setting𝑈 [𝑟𝑏] ≔ (𝑟𝑎,R♯′)
// i.e. in add_relationI

(
(𝑈 , 𝐼 ), 𝑏, 𝑎, R♯

)
𝑚𝑎 ⊓I 𝑚𝑏 ≜
for (R♯

𝑎 ↦→ 𝑝) ∈𝑚𝑏 do
if R♯

𝑎 ∈ dom𝑚𝑎 then new_id_rel
(
𝑝, 𝑚𝑎 [R♯

𝑎]
)

else𝑚𝑎 [R♯

𝑎] ≔ 𝑝

return𝑚𝑎

(a) Instantiation of ⊓I.

𝑏 𝑎

𝑟𝑏 𝑟𝑎

𝑝 𝑚𝑎 [R♯

𝑎]

R♯

R♯′

R♯

𝑎
R♯

𝑏

id♯

R♯

𝑎

(b) Case R♯

𝑎 ∈ dom𝑚𝑎 .

𝑏 𝑎

𝑟𝑏 𝑟𝑎

R♯

𝑝

R♯′

R♯

𝑏

R♯

𝑎

(c) Case R♯

𝑎 ∉ dom𝑚𝑎 .

Fig. 6. Instantiation of ⊓I to update identity classes, illustrated using squiggly arrows for bindings in 𝐼 . The

illustrations represent the application of ⊓I and A as done in add_relationI
(
(𝑈 , 𝐼 ), 𝑏, 𝑎, R♯

)
(Figure 5).

get_relation (𝑈 , 𝑦, 𝑧). Instead, we want the labeled union-find domain to “push” new inferred

equalities by calling a user-supplied function, new_id_rel (𝑦, 𝑧), whenever 𝑦 id♯−−→→ 𝑧.

To solve this, we will first partition the variables X using the id♯
relation. This is an instance of

constraint factorization as we now only need to relate equivalence classes of id♯
. Then, we add

some information on relational classes, namely a mapping from labels to variables (i.e., following

Section 3.3, with I = R♯ ⇀ X). The information can be seen as a trie representing the labeled

union-find tree in the opposite direction, mapping the root to a representative element of the id♯

equivalence class. Formally, the following invariants are preserved in a (𝑈 , 𝐼 ) pair:

• find (𝑈 , 𝑥) = (𝑟,R♯) ⇒ 𝐼 [𝑟 ] [R♯] id♯−−→→ 𝑥

• (R♯ ↦→ 𝑥) ∈ 𝐼 [𝑟 ] ⇒ find (𝑈 , 𝑥) = (𝑟,R♯)
Initially, we initialize the (𝑈 , 𝐼 ) pair as follows: initI () ≜ (∅,

[
𝑛 ∈ N ↦→ [id♯ ↦→ 𝑛]

]
). The action

shifts all keys by the provided relation: A(R♯, 𝐼 ) ≜ 𝐼 [inv♯ (R♯) ;♯ ·]. The ⊓I operation is defined in

Figure 6. It merges the mappings, and calls new_id_rel on discovered id♯
relations.

The above algorithm guarantees that the transitive-reflexive closure of the calls to new_id_rel
(which can be constructed using a classic union-find), is the set of all the id♯

that are implied by𝑈 .

Moreover, there are no redundant calls to new_id_rel.
Using the same information, one can also detect more relations during the merge; for instance

we can detect disequalities when merging incompatible constant difference relations (e.g. 𝑦 = 𝑥 + 2

and 𝑦 = 𝑥 + 3), or constant differences when merging TVPE relations (e.g. 𝑦 = 2𝑥 + 3 and 𝑧 = 2𝑥 + 7).
As presented in Figure 3, constant difference is useful to perform constraint factorization on DBMs.

6.2 Reduced Product with Shostak Theory
While the previous section made use of abstract relations, this section describes how new relations

can be discovered using an extension of Shostak theory [Shostak 1984]. Moreover, we will see how

the labeled union-find can optimize the implementation of Shostak theory.

To summarize, a Shostak Theory T as defined in Barrett et al. [2002] with signature Σ, canonizer
canon, and solver solve, is able to decide if a set of equations 𝐸 in Σ implies an equality 𝑡1 = 𝑡2
in 𝐸. The function solve returns a substitution from an equation, and canon normalizes a term

(T |= 𝑡1 = 𝑡2 iff canon (𝑡1) ≡ canon (𝑡2), where ≡ is syntactic equality). The algorithm computes

incrementally equisatisfiable sets 𝑆𝑖 of equations where their left-hand side is a variable that appears

only once in the set. In the following, such sets of equations are considered to be substitutions.

Example 6.1. The theory of linear real arithmetic is a good example of a Shostak theory. Here,

canon is obtained from an ordering on the variables, and solve consists in Gaussian elimination
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(expressing one variable as a linear equation using the others). The algorithm processes the set

𝐸 = {

𝑒1︷            ︸︸            ︷
−𝑧 + 𝑦 − 𝑢 = 0,

𝑒2︷             ︸︸             ︷
𝑥 + 2𝑧 = 2𝑧 − 𝑢,

𝑒3︷              ︸︸              ︷
−𝑡 − 2𝑦 = 𝑧 + 2𝑣,

𝑒4︷            ︸︸            ︷
𝑧 − 2 = −𝑦 − 𝑣} as follows:

• 𝜎𝑖 ≜ solve (𝑆𝑖 (𝑒𝑖 )), with 𝑆0 ≜ ∅ and 𝑆𝑖 ≜ 𝜎𝑖 (𝑆𝑖−1) ∪ 𝜎𝑖 for 𝑖 ≥ 1

• 𝜎1 = {𝑢 = 𝑦 − 𝑧}, 𝜎2 = {𝑥 = 𝑧 − 𝑦}, 𝜎3 = {𝑡 = −2𝑦 − 2𝑣 − 𝑧}, 𝜎4 = {𝑧 = −𝑦 − 𝑣 + 2}
• 𝑆3 = {𝑢 = 𝑦 − 𝑧, 𝑥 = 𝑧 − 𝑦, 𝑡 = −2𝑦 − 2𝑣 − 𝑧}
• 𝑆4 = {𝑢 = 𝑦 − 3, 𝑥 = 3 − 𝑦, 𝑡 = −𝑦 − 𝑣 − 2, 𝑧 = −𝑦 − 𝑣 + 2}

The entailed equalities between variables (such as 𝑢 = 𝑥 in 𝑆3 in Example 6.1) can be found

by keeping a reverse mapping𝑀 from the canonized right-hand side to a representative of their

left-hand side. This is useful for propagating equalities among theories. Moreover, a union-find-like

data structure Δ usually allows remembering 𝑢 = 𝑥 , and stores the right-hand side, 𝑦 − 3 for 𝑆3,

only once at the representative of 𝑥 and 𝑢 (as described in Conchon et al. [2007]). Additionally, it

avoids substituting in both definitions of 𝑢 and 𝑥 when computing 𝑆4.

We propose to use labeled union-find in order to further factorize the equations and find dis-

equalities between variables (or other relations). Given labels ℓ which follow the hypothesis of

Section 3, an extended Shostak Theory requires, in addition to canon, a function canon_rel that
returns a term and a label: canon_rel (𝑡) = (𝑡 ′, ℓ). Similarly to canon, we say that T |= 𝑡1 = 𝑡2 iff

𝑡 ′
1
≡ 𝑡 ′

2
and ℓ1 = ℓ2 (where (𝑡 ′

1
, ℓ1) = canon_rel (𝑡1) and (𝑡 ′

2
, ℓ2) = canon_rel (𝑡2)). We also need a

group action A, that rebuilds a term from a term and a label. Formally, if canon_rel (𝑡) = (𝑡 ′, ℓ)
then A(ℓ, 𝑡 ′) = canon (𝑡). Given these building blocks, we can optimize 𝑀 and Δ. The reverse
mapping for canon_rel (𝑡) = (𝑡 ′, ℓ) only needs to map 𝑡 ′. Δ becomes a labelled union-find with

label ℓ and with I the term at the right-hand side.

Example 6.2. Using the abstract relation constant difference (Example 2.1), canon_rel separates

the constant part from the rest after normalization (e.g. canon_rel (−𝑦 − 𝑣 − 2) = (−𝑦 − 𝑣,−2)). In
𝑆4, it allows storing and substituting only in 𝑡 = −𝑦 − 𝑣 − 2, while keeping the relation 𝑧 = 𝑡 + 4 in

the labeled union-find Δ. Combined with the equivalence class described in Section 6.1, this still

entails equality, and additionally entails disequalities.

This Example 6.2 is used in our evaluation in Section 7. The collaboration between the Shostak

Theory of linear arithmetic and the abstract relation constant difference provides a qualitative gain

on other domains. The newly found relational information allows new propagations.

Example 6.3. With the equations from Example 6.1, if we know 𝑡 ∈ [0; 10], forward and backward
propagation of intervals on arithmetic operators and equalities cannot propagate any information

through 𝑒3 since, for example propagation from 𝑧 + 2𝑣 to 𝑧 is imprecise. However, with the labeled

union-find Δ for constant difference of Example 6.2 as in Section 5, 𝑧 ∈ [4; 14] is directly deduced.

Using the TVPE relational domain instead of constant difference gives even more benefits, since

𝑥 = 3𝑢 + 3𝑣 and 𝑦 = 8𝑢 + 8𝑣 (related by (8/3, 0)) would be factorized and their domains would be

propagated directly. However, since it does not satisfy HUniqeLabel, some care is needed during

conflict to propagate the learned constants.

7 Preliminary Implementation and Evaluation Results
7.1 Extending a Constraint Solver with Constant Difference
Colibri2 is a new constraint solver used for program verification. It handles quantified SMT

formulas across many theories. It emphasizes propagation inside and between theories.
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int t[10][10];
if(0 <= 10*i + j < 90){
a = t[i][j + 1]; ...

}

Fig. 7. Fragment of C program.

Motivation. While working on the theory of sequences (Dy-

namically sized arrays [Ait-El-Hara et al. 2024a; Sheng et al.

2023]), we found a lack of propagation of the interval domain

between some arithmetic terms. For example, in Figure 7, t is rep-

resented as a unique sequence of size 100, with access modeled as

seq. nth(𝑡, 10𝑖 + ( 𝑗 + 1)). This requires proving that 10𝑖 + ( 𝑗 + 1) ∈
[0; 99], which cannot be deduced from 10𝑖 + 𝑗 ∈ [0; 89] using basic

interval propagation as shown in Example 6.3 and as is done in the

original solver, which will be referred to as base.

Users of verification tools are often frustrated when seemingly simple problems are not solved.

For example, the problem Example 7.1 that only use one multiplication is not solved by base. A

decision procedure for non linear-arithmetic is difficult to implement and costly, but in that case,

a propagation between 𝑓 (4) and 𝑓 (9) which are at a constant distance of 5 would suffice. The

simplex algorithm can be theoretically used for this propagation, but adding the negation of every

unknown comparisons or calling a maximization and minimization for every term is costly.

Example 7.1. Given two real variables 𝑎 and 𝑏, a function 𝑓 (𝑥) = 2𝑎 + 𝑥 + 3𝑏 and the assertion

that 10 < 𝑓 (4) holds. 𝑓 (9)2 ≤ 225 is unsatisfiable for any values of 𝑎 and 𝑏.

Implementation. We want to propagate across terms that are related by the constant difference

abstract relation (Example 2.1), so we can use the labeled union-find to group them (Section 6.1).

The relations between these terms are found following Section 6.2. This lead to the variant of

Colibri2 where we propagate the interval domain between elements of those labeled union-find

relational classes, which we call labeled-uf.

We also went further by factorizing (Section 5.2) the interval domain. This third version is

referred to as group-action. Initially the interval domain used in Colibri2 was not a group action

for the relation: since reals and integers are handled together (to reason about conversions), the

domain had a flag to indicate if it only contained integers. This “is integer” flag was not a group

action: e.g., adding and removing 0.5 loses precision. So we replaced this flag with the congruence

domain on rationals [Granger 1989, 1997], which is a group action for the constant difference

relations (and for TVPE, which will be useful when we integrate them). This congruence domain is

also used by base and labeled-uf for a fair comparison.

During development, we found that many regressions of labeled-uf and group-action com-

pared to base were due to slow convergences [Bordeaux et al. 2007], i.e., very long or infinite

sequences of propagations. With the new propagations naturally came new slow convergences.

In Colibri2, these are normally limited by stopping the propagations from a term when it has

been updated too many times. But in this case, the presence of non-linear constraints, rationals and

unbounded variables, lead here to an unforeseen kind of slow convergences: the rational numbers

used in the bounds of the intervals grew too fast to fit into memory, leading to more “out of memory”

errors. To remedy this, we limited the propagation of the interval domain when its bounds take

more than 20 memory words. It helped labeled-uf to be on par with base. For group-action, we

added a second improvement, when the propagation of the multiplication creates a domain that

uses numbers that are too big in memory, it is over-approximated with bounds that use smaller

denominators. It is a sort of on-demand floating point approximation. Even though group-action

benefited the most from these fixes, labeled-uf and base also improved.

Both variants labeled-uf and group-action are able to make the propagation between 10𝑖 + 𝑗

and 10𝑖 + ( 𝑗 + 1), for Figure 7, and solve Example 7.1.
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Table 1. Comparison of Colibri2 variants on

SMT-LIB benchmarks. Number of newly solved

(+), unsolved (-) problems and difference for each

row compared to columns. In total 17465 prob-

lems are solved by base.

base labeled-uf

labeled-uf -49 +61 (+12)

group-action -65 +70 (+5) -39 +22 (-17)

Test Bench. To evaluate our new implementations

on a large scale, we tested them on the SMT-LIB

[Barrett et al. 2016] 2024 benchmarks [Preiner et al.

2024] for integer and real arithmetic theories, corre-

sponding to the logics QF_LIA, QF_LRA, QF_LIRA,

QF_IDL, QF_RDL, QF_NIA, QF_NRA, and QF_NIRA,

totaling 55,449 problems which are not sourced only

from program verification.

We compared the labeled-uf and group-action

implementations against base, the original imple-

mentation inColibri2. Experiments were conducted

using six cluster nodes, each equipped with 72 cores at 3GHz and 187GB of RAM. 30 cores per node

were used, with a time limit of one minute and a memory limit of 4GB per problem.

Results. Table 1 presents the results of our experimentation. Comparing only the number of

solved problems before the 60s timeout biases the result towards the problems that are solved near

the time limit. So we consider that a solver version improves on a problem compared to another

solver version if it solves it in less than 55s (cutoff) while the other is not able to solve it in 60s. Both

labeled-uf and group-action improve upon base, with respectively 12 and 5 more improvements.

Interestingly if we use a cutoff of 5s, 14 problems are solved by both variants in less than 5s, while

base cannot solve them in 60s (conversely it is 1 and 3 respectively). However, for some problems

that remains to be investigated, group-action solves them a lot slower than labeled-uf or base.

In conclusion, the labeled union-find allowed us to easily implement new propagations com-

pared to base. labeled-uf and group-action have comparative results from base. For now the

regressions found are due to the additional propagations. It is in a sense the price of success, we are

able to solve a problem our user got, while losing a small percentage of time overall. group-action

is behind labeled-uf, its implementation is more complex and requires more future refinements.

Finally, the next step will be to implement TVPE, which will provide even more new propagations.

7.2 Extending an Abstract Interpreter with TVPE
Our experiments focus on the following questions: what is the performance impact of using labeled

union-find (with TVPE) in a non-relational abstract Interpreter in terms of runtime and memory

usage? To what extent can labeled union-find improve precision of such an analyzer?

Implementation. We used labeled union-find in the Codex static analyzer for C code. Specifically,

our implementation performs map factorization as seen in Section 5.2. It works with the TVPE

abstract relations (Example 4.6) and a reduced product between interval and congruence [Granger

1989] as a non-relational abstraction. int i = 0, j = 4;
while(i < 10) {

i += 1;
j += 3;

}

Fig. 8. Small C program.

One specificity of Codex is that it performs the numerical analysis

after SSA translation [Lemerre 2023; Lesbre and Lemerre 2024]. This

allows us to usemutable union-find to represent flow-insensitive relations

between SSA variables (which are bound and not assigned), and thus

avoids the performance costs caused by the use of a confluently persistent

implementation (Appendix A). However, it limits the relations we can

use: we cannot learn from conditionals (integration with flow-sensitive

implementations of union-find is planned in future work, another option would be using an e-SSA

[Bodík et al. 2000] or SSI [Ananian 2001; Boissinot et al. 2012] form). We thus only add relations in

the following cases:
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• variable definitions: when an SSA variable 𝑦 is bound to an addition between a variable

and a constant (e.g. 𝑥 + 1), we can add the relation (𝑦
+1−−→→ 𝑥 ). The same goes for subtraction

and multiplication (if the analysis can prove absence of possible wrap-around);

• joining related variables: if a branch contains 𝑦0
R♯

−−→→ 𝑥0 and the other has the same

relation 𝑦1
R♯

−−→→ 𝑥1, then the join 𝑥2 = 𝜙 (𝑥0, 𝑥1);𝑦2 = 𝜙 (𝑦0, 𝑦1) also satisfies 𝑦2
R♯

−−→→ 𝑥2;

• joining constants: the labeled union-find can represent some information lost in the join

of the non-relational domain. With TVPE, we can relate 𝜙 terms with constant arguments: it

amounts to finding a line through two points. For instance, if a branch contains 𝑥0 = 1;𝑦0 = 3

and the other 𝑥1 = 2;𝑦1 = 5, then the join 𝑥2 = 𝜙 (𝑥0, 𝑥1);𝑦2 = 𝜙 (𝑦0, 𝑦1) satisfies𝑦2
•×2+3−−−−−→→ 𝑥2.

This may or may not be possible depending on the relation being used. With TVPE, we can

relate all constant 𝜙-terms: it amounts to finding a line through two points.

With this construction, conflicts will never occur since there is at most one relation per variable.

Example 7.2. The C code of Figure 8 illustrates how joining constants and related variables can

improve precision of the analysis. Running a simple non-relational analysis on it yields 𝑖 = 10, 𝑗 ∈
[4 : +∞], 𝑗 ≡ 1 mod 3 after the loop. However, with labeled union-find, the relation 𝑗 = 3 ∗ 𝑖 + 4

is inferred and maintained through the loop and widening, leading to a final value of 𝑖 = 10, 𝑗 = 34.

Test Bench. We selected 584 C functions from the ReachSafety category of the SV-Comp bench-

marks [Beyer 2024]. We selected the test folders that focus mainly on numerical tasks.

Method. We have run Codex, both with and without the labeled union-find domain, Codex has

sophisticated constraint propagation: when learning new information about a variable 𝑥 , Codex

propagates it both upwards to the variables used to define 𝑥 , and downwards to the variables that

use 𝑥 in their definitions. The default depth limit for this propagation is 1000. To mimic the behavior

of a simpler analyzer, we ran the experiment again, setting the depth limit to 2.

For each run, we measured the runtime, memory usage, number of performed unions, maximum

relational class size, and the count of unsolved alarms and assertions. The 584 tests totaled 16507

lines of code, with an average of 28 lines per tests and a maximum of 1408.

Results. 451 tests called add_relation, with an average of 40 calls per analysis. The relational

classes are small, with an average of 2.4 SSA variables in the largest class, and a maximum of 12.

Comparing the number of unions performed to the number of SSA variables shows that 12% of the

bitvector variable are in unions on average, with a maximum of 43%.

In terms of performance: the memory consumption was comparable, and runtime was on average

10% slower when using union-find. This confirms the relatively cheap nature of this domain.

As expected, there were no cases where using labeled union-find lead to precision losses. There

were only 23/584 cases where the labeled union-find allowed tightening the non-relational infor-

mation. In 11 of these cases, the precision improvements allowed proving new alarms or assertions.

When using the lower constraint propagation limit, we get 122/584 cases of precision improvements

of non-relational information, with 22 cases leading to proving more alarms or assertions.

8 Related Work
We have previously published a work-in-progress short paper at a non-archival venue [Lemerre and

Lesbre 2024], which summarized the concept of labeled union-find and some results of Section 4. It

did not include the algorithms, detailed formalization, theorem statements, nor any experimental

evaluation. The current paper provides a significantly expanded treatment, including all those

missing elements.
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Weakly Relational Domains. Our formalization of weakly-relational domains differs from the usual

presentation. Schwarz et al. [2023] proposes a general presentation of weakly relational domains

based on a 2-decomposability notion, requiring the domain to be expressible as a conjunction of

constraints over single variables and pairs of variables, and the join to be applied to each component

of the conjunction. In our formalization, we can represent all the 2-decomposable domains as a

reduced product between our weakly relational abstraction W♯ = (X×X) → R♯
and a non-relational

abstraction X → V♯
. This includes Octagons [Miné 2006] (as pairs of intervals constraining 𝑥 − 𝑦

and 𝑥 +𝑦), DBMs [Miné 2001], Pentagons [Logozzo and Fähndrich 2008], or TVPI [Simon and King

2010], but not general polyhedra [Cousot and Halbwachs 1978] or linear equalities [Karr 1976].

There are conditions for the Floyd-Warshall algorithm to compute the transitive closure [Schwarz

and Seidl 2023]. Some weakly relational domains that can be represented in our formalization, like

DBMs with disequalities [Péron and Halbwachs 2007], do not fit these criteria.

The formalization that most closely resembles ours is that of [Miné 2002], but the relation is

limited to the form 𝑦 − 𝑥 ∈ R♯
, which cannot represent bitvector or octagon constraints. Bagnara

[1998] describes other relations between pairs of reals, such as bounded quotient.

Making Relational Domains More Efficient. The supra-linear complexity of relational domains

was quickly noted as a problem, and solutions were devised to work around this problem. One

pragmatic solution is packing [Blanchet et al. 2003; Heo et al. 2016; Venet and Brat 2004], i.e.,

considering only the relations between different clusters of variables based on some heuristics.

While effective, this strategy leads to precision losses, as we forget about some of the relations

between variables.

One of the first attempts to gain precision in relational abstract domains (especially polyhedra)

without losing precision is Halbwachs et al. [2006], which proposes three independent techniques:

factoring/decomposition, i.e., detecting clusters of variables with no relations between them;

substituting variables using linear equations to remove one variable, and base changes. They

reported improvements of the factoring method, which has since been successfully explored in

[Singh et al. 2015, 2017, 2018]. However, their results with the variable substitution method were

disappointing, as the method allowed negligible gains (possibly because the implementation of

Chernikova’s algorithm already uses variable substitution) but could cause significant overhead

(possibly because Karr’s domain [Karr 1976], which they also used, has O(|X|3) operations [Müller-

Olm and Seidl 2004]). Our constraint factorization method has similarities with this technique,

but the domains we propose in this paper are cheap. Variable substitution is not used in weakly-

relational domains, and we can already observe speedups when using them (in the constraint

programming setting), which makes this research direction worthy of re-exploration.

Outside of numerical analysis, Cox et al. [2015] describes the use of an abstract domain computing

equalities, and its use for constraint factorization of domains computing relations between sets,

which provides significant performance gains in equality-heavy loads.

Making Weakly Relational Domains More Efficient. Weakly-relational domains were developed as

a remedy against the high computational complexity of relational domains, but their supra-linear

complexity (O(|X|2) storage, O(|X|3) computation time), coming from the need to perform transi-

tive closure, remains a bottleneck in program analysis for large instances. Outside of decomposition

[Singh et al. 2015], we can also exploit the natural sparsity of the graph, i.e. not store edges that

carry no information (e.g., if their interval difference relation is [-∞, +∞]). However, as soon as

the values of two variables are constrained by an interval, some information on their difference is

known, making the graph spuriously dense. Following this observation, Gange et al. [2021] and

Jourdan [2016] propose a method that can be seen as constraint elimination when the eliminated
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constraints can be recovered using the non-relational domain, making the graph sparse. This

method is orthogonal to our constraint factorization method, so a combination of both is possible.

One way to make domains more efficient is sparse abstract interpretation [Mirliaz and Pichardie

2022; Paisante et al. 2016; Tavares et al. 2014], i.e. having a global flow-insensitive invariant, and

rely on variable renaming/live-range splitting to avoid losing precision. This would be a natural

candidate for labeled union-find, as these representations simultaneously often have many variables

(which would benefit from factorization (Section 5)), and flow-insensitive information allows using

mutable union-find and avoiding expensive join operations.

Semi-relational Domains. Semi-relational domains [Bodík et al. 2000; Logozzo and Fähndrich

2008; Nazaré et al. 2014] are another family of abstract domains that are cheaper than weakly

relational methods. They are implemented using a X → “abstraction” map (O(|X|) complexity),

where “abstraction” can refer to other variables. Unlike our domains, they do not perform any

transitive closure; instead, they just take advantage of the relations that they encounter. They are

effective in solving bound-checking problems. As they are also inexpensive, a combination of these

domains with labeled union-find domains could improve precision while remaining inexpensive.

Instances of Labeled Union-Find. The labeled union-find structure was introduced by Frühwirth

[2007, 2009] (under the name generalized union-find), and applied on non-integer TVPE and single-

bit xor relations. Zucker [2022] mentions this data structure, and gives examples of interesting and

suitable groups.

Several existing works can also be viewed as specific instances of the labeled union-find data

structure. Aspvall and Shiloach [1980] uses TVPE on a spanning forest to efficiently solve systems of

linear equations with at most two variables per equation. Ghidini et al. [2024] describes an instance

of labeled union-find using constant difference relations, and reports that the analysis scales well

and infers useful properties. Ait-El-Hara et al. [2024b] describes a theory of 𝑛-indexed sequences

featuring a family of equivalence modulo a relocation relation denoted 𝑠1 =reloc(𝑑 ) 𝑠2, between two

𝑛-indexed sequences 𝑠1 and 𝑠2, where the relation indicates that 𝑠1 and 𝑠2 have the same content but

have indices shifted by 𝑑 . They also hint at a variation of the union-find data structure based on this

relation. Nieuwenhuis and Oliveras [2005] use identifiers of union operations as labels to compute

the smallest set of union operations that connects two elements. This can be achieved using labeled

union-find over the free group (ignoring that some elements are inversed when returning the set).

In all these works, the edges are labeled by bijective concrete mathematical relations. By using

abstract relations, we can accomodate cases where the relations are not bijective (Example 4.6),

and where the identity relation can be an equivalence relation distinct from equality.

Other Extensions of Union-Find. Tarjan [1979] describes an extension of the union-find data

structure, the link-eval structure, notably used to compute dominators in Lengauer and Tarjan

[1979]. The structure also composes labels on a path, where labels only have to obey the semigroup

axioms. Despite these superficial similarities, the structure is actually quite different; notably in

labeled union-find the label is carried on edges, whereas it is carried on nodes in link-eval.

9 Conclusion
We have presented a new family of cheap relational abstract domains based on the new labeled

union-find data structure. We started from a formalization of weakly relational abstract domains as

graphs labeled by abstract relations. To make dynamic computation of transitive closure efficient,

we assumed a unique label assumption that led us to discover a data structure that we call labeled
union-find. Labeled union-find further assumes that the composition of labels follows the group

axioms. For abstract relations, this latter assumption implies that abstract relations represent
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injective transformations between equivalence classes. We proposed many interesting instances of

abstract relations, including TVPE (affine relations of the form 𝑦 = 𝑎 ∗ 𝑥 + 𝑏).
Domains based on labeled union-find can be combined with other numerical domains by reduced

product or by constraint factorization (linking only to one element in the relational class of elements

related in a labeled union-find), and we studied different applications, including combination

with non-relational domains, with weakly relational domains, with equalities, or with domains

exchanging information through an extension of Shostak theory. We have found use cases in both

program analysis and constraint solving for SMT, with promising initial benchmarks that show

that adding labeled union-find is cheap yet can store and propagate useful information.

We have described a few distinct instantiations of the framework, but its genericity could lead

to many other applications, and this paper could be a first step in a promising line of research.

In general, the union-find structure is often used in program verification, as an efficient way to

compute closure of equivalence relations. It is used to perform efficient unification [Paterson and

Wegman 1978], to speed up datalog computations [Nappa et al. 2019; Sahebolamri et al. 2023], in

alias analysis [Steensgaard 1996], in abstract interpretation [Chang and Leino 2005; Cox et al. 2015],

etc. Labeled union-find extends the possibilities of using this efficient data structure to new usages.
The labeled union-find data structure described in Section 3 could also find uses outside of

program analysis and verification. Consider an unknown variable 𝑥0. We repeatedly derive new

variables 𝑥𝑖 by applying invertible transformations on 𝑥0 and its derived variables. Labeled union-

find easily solves how one can transform one variable to another, or compute the value of a variable

when the value of another is known. Applications could be solving geometry or Rubik’s cube

problems, but it would be interesting to find even more use cases for efficient transitive closure of

group elements.
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inter ∈ UC × UC → UC
inter ((𝑈1,𝐶1), (𝑈2,𝐶2)) ≜

let𝑀 ∈ N × N ⇀ List(N × L × L) = ∅ in // Absent keys implicitly map to an empty list

let 𝐶 = 𝐶1 ∩𝐶2 combining non-equal values with 𝑛 𝑐1 𝑐2 ↦→
𝑀 [𝑛, 𝑛] ≔ [(𝑛, id, id)]; return 𝑐1 ∩ 𝑐2 in

let𝑈 = 𝑈1 ∩𝑈2 combining non-equal values with 𝑛 (𝑟1, ℓ1) (𝑟2, ℓ2) ↦→
for (𝑟, ℓ ′

1
, ℓ ′
2
) in𝑀 [𝑟1, 𝑟2] do

if ℓ1 ;̂ ℓ ′
1
= ℓ2 ;̂ ℓ ′

2
then // Same relation between 𝑛 and 𝑟 in 1 and 2

if not on first iteration then 𝐶 [𝑟 ] ≔ 𝐶 [𝑟 ] ∪ {𝑛};
return (𝑟, ℓ1 ;̂ ℓ ′

1
)

if on first iteration then 𝐶 [𝑟 ] ≔ 𝐶 [𝑟 ] \ {𝑛};
// No return occured, we iterate in ascending order so 𝑛 is the lowest element of its class

𝐶 [𝑛] ≔ if 𝑀 [𝑟1, 𝑟2] = [] then 𝐶1 [𝑟1] ∩𝐶2 [𝑟2] else {𝑛};
𝑀 [𝑟1, 𝑟2] .append((𝑛, inv (ℓ1) , inv (ℓ2))); return (𝑛, id) in

return (𝑈 , 𝐶)

Fig. 9. Intersection on immutable labeled union-find (abstract join).

A Abstract Join: Immutable Labeled Union-Find Intersection
The union-find structure presented in Section 3 makes heavy use of mutability. This allows for

excellent performance in union and find operations, but makes copying very costly. This is fine

when representing flow insensitive relations (that hold at every point), but insufficient to represent

flow-sensitive ones (local to a branch): in the latter case, we need several versions of the data

structure that are updated from a common version, and we need to merge them. Merging implies

that we need confluent persistence [Driscoll et al. 1994; Fiat and Kaplan 2003], so union-find

implementations with a weaker notion of persistence [Conchon and Filliâtre 2007] do not suffice

for our needs.

We thus need immutable maps to represent U, which adds a moderate performance cost (find
is now O(log𝑛) instead of amortized O(1)). Specifically, we use fast mergeable maps [Okasaki

and Gill 1998], as they allow for intersection in O(Δ log𝑛), where 𝑛 is the size of the maps and

Δ is their difference. As we join maps deriving from a common ancestor, we expect Δ to be small

relative to 𝑛.

Theoretically, the most precise abstract join between two union-finds consists in saturating both;

taking the intersection of the saturated graphs; and then returning to the union-find form by con-

straint elimination. Figure 9 presents an algorithm computing that join without having to saturate

the graphs. In order to make use of fast intersection, which skips sub-maps consisting of elements

with common representatives, it needs a union-find representation that only depends on its contents.

Thus, we use collapsing union-find [Tarjan and van Leeuwen 1984], which performs eager path

compression, and is reasonably efficient [Patwary et al. 2010]. Maintaining this in add_relation
requires storing reverse maps from representatives to all their elements: UC ≜ U × (N ⇀ P (N)).
Additionally, we require that representatives point to themselves; and that there is a total order on

N, with each representative being the smallest element of their connected component.

The algorithm identifies the classes of the intersection by a pair of classes (which we identify by

their representatives) of the arguments. The labeled version, however, may split such a connected-

component further since it only keeps edges with the same labels. Thus, we use a memoization

map 𝑀 that keeps, for each pair of connected components from the arguments, the list of new

components in their intersection, along with the relations between the old representative to the

new one. Note that it starts by assuming that the intersection of two connected components will
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contain all their shared nodes (the first time a pair of components is encountered, the new 𝐶 value

is initialized to their intersection), but abandons this for further component splits (𝐶 only starts as

a singleton).

Theorem A.1 (Inter correction and complexity). For (𝑈1,𝐶1) and (𝑈2,𝐶2) ∈ UC satisfying
the invariants, then (𝑈𝑖 ,𝐶𝑖 ) ≜ inter ((𝑈1,𝐶1), (𝑈2,𝐶2)) also satisfies these invariants and for all 𝑛,
𝑚, ℓ :

get_relation (𝑈1, 𝑛, 𝑚) = ℓ = get_relation (𝑈2, 𝑛, 𝑚) ⇔ get_relation (𝑈𝑖 , 𝑛, 𝑚) = ℓ

It runs in O(Δ2 log2 𝑛) where 𝑛 = |𝑈1 | + |𝑈2 | and Δ is the number of different bindings between them.

Proof. See proof in Appendix B.4 (page 39). □

The presented join only operates on the relational part, but it could easily be extended to support

also having a factorized map of values as in Section 5.2.

B Proofs
B.1 Proofs: Union-Find with a Group of Edges Labels
Proof of Theorem 3.1: we start by proving a slightly different formulation of this theorem:

Lemma B.1. Let 𝑈 ∈ U be the union-find obtained by calling add_relation a number of times on
init () (with conflict being no-op). Then:

(1) find terminates, does not change the saturated graph, and (𝑟, ℓ) ≜ find (𝑈 , 𝑛) ⇒ 𝑛
ℓ−→→𝑈 𝑟 ;

(2) the saturated graph of𝑈 satisfies HUniqueLabel and is included in the saturated graph of the
edges passed to add_relation;

(3) 𝑛 and𝑚 are in the same connected component iff. they have the same representative;

(4) get_relation (𝑈 , 𝑛, 𝑚) = ℓ ≠ ⊤ if and only if 𝑛
ℓ−→→𝑈 𝑚,

(5) get_relation (𝑈 , 𝑛, 𝑚) = ⊤ if and only if 𝑛 and𝑚 are in distinct components;
(6) conflict is not called if and only if HUniqueLabel holds in the saturated graph of the edges

passed to add_relation. In that case, both saturated graphs are equal.
Proof.

(1) Start by proving that there are no looping chains in𝑈 (by induction on 𝑘):

– it is trivially true for the empty map

– for the recursive case: both find and add_relation canmodify𝑈 . However, when they

do, they set a node to point to another node which is returned by find. By definition of

find, such a node cannot be in dom𝑈 , it must point to nothing, so no chain is created.

This justifies that find terminates.

Now take (𝑟, ℓ) ≜ find (𝑈 , 𝑛), by induction on the chains in 𝑈 , we can show that the

induced graph hasn’t changed and 𝑛
ℓ−→→ 𝑟 :

– If 𝑛 ∉ dom𝑈 , 𝑈 isn’t changed at all and find returns (𝑛, id) so PathRefl shows

𝑛
ℓ−→→ 𝑟 ;

– If 𝑈 [𝑛] = (𝑚, ℓ𝑚) and the property holds for𝑚, we have 𝑛
ℓ𝑚−−→→ 𝑚 by EdgePath and

𝑚
ℓ𝑟−→→ 𝑟 by induction hypothesis, so PathTrans yields 𝑛

ℓ𝑚 ;̂ℓ𝑟−−−−→→ 𝑟 .

𝑈 [𝑛] is then modified, however we can show that this doesn’t change the induced

graph. For one, the new saturated graph is included in the old one since we replaced

𝑛
ℓ𝑚−−→𝑚 by 𝑛

ℓ𝑚 ;̂ℓ𝑟−−−−→ 𝑟 , which was already present in the saturated graph. For the other



195:30 Dorian Lesbre, Matthieu Lemerre, Hichem Rami Ait-El-Hara, and François Bobot

inclusion, it suffices to show that, in the new graph, 𝑛
ℓ𝑚−−→→𝑚 holds. To do so simply

apply PathTrans and PathSym to𝑚
ℓ𝑟−→→ 𝑟 and 𝑛

ℓ𝑚 ;̂ℓ𝑟−−−−→ 𝑟

Note that we know that𝑚
ℓ𝑟−→→ 𝑟 still holds because𝑚 ≠ 𝑛 by the no-looping chains

condition, and after the call to find (𝑈 , 𝑚), either𝑚 ∉ dom𝑈 (in which case 𝑟 =𝑚

and ℓ𝑟 = id, so PathRefl gives the result) or 𝑈 [𝑚] = (𝑟, ℓ𝑟 ) so EdgePath gives the

result.

(2)-1 We already know that calling find does not change the graph induced by𝑈 , all we need to

show is that the edges added by add_relation (𝑈 , 𝑛, 𝑚, ℓ) are implied by 𝑛
ℓ−→→𝑚.

The added edges are either 𝑟𝑛
inv(ℓ𝑛 ) ;̂ℓ ;̂ℓ𝑚−−−−−−−−−→→ 𝑟𝑚 or 𝑟𝑚

inv(ℓ𝑚 ) ;̂inv(ℓ ) ;̂ℓ𝑛−−−−−−−−−−−−−−→→ 𝑟𝑛 . Since we have

𝑛
ℓ𝑛−→→ 𝑟𝑛 and𝑚

ℓ𝑚−−→→ 𝑟𝑚 by (1), both of these added edges can be built using PathTrans and

PathSym (as seen in the graph of Figure 4).

Here we can also show that, as long as there are no conflict calls, then the graphs are equal

since we can always reconstruct 𝑛
ℓ−→→𝑚 from 𝑛

ℓ𝑛−→→ 𝑟𝑛 and𝑚
ℓ𝑚−−→→ 𝑟𝑚 and the added edge.

This will be useful in (6).

We will prove that the graph of𝑈 satisfies HUniqeLabel later.

(3) Being in the same connected component is equivalent to being linked by an edge 𝑛
ℓ−→→𝑚 in

the saturated graph. Proceed by induction on that edge:

– EdgePath: this implies𝑈 [𝑛] = (𝑚, ℓ), which in turn would imply that their represen-

tatives match;

– PathRefl: this implies 𝑛 =𝑚, so their representatives match;

– PathSym: immediate by induction hypothesis;

– PathTrans: our edge decomposes as 𝑛
ℓ0−→→𝑚′ ℓ1−→→𝑚, by induction hypothesis, 𝑛 and

𝑚′
have same representative, and so do𝑚′

and𝑚, therefore, so do 𝑛 and𝑚.

For the reciprocal, if two elements 𝑛,𝑚 have the same representative then by (1) they are

both linked to that representative in 𝑈 ’s saturated graph, which is a subset of the edge’s

graph by (2)

(4) ⇒ Let ℓ = get_relation (𝑈 , 𝑛, 𝑚), if ℓ ≠ ⊤ then by definition of get_relation, ℓ = ℓ𝑛 ;̂

inv (ℓ𝑚) and 𝑛 and𝑚 have same representative 𝑟 . Furthermore, by (1) we have 𝑛
ℓ𝑛−→→ 𝑟 and

𝑚
ℓ𝑚−−→→ 𝑟 . We can conclude by applying PathSym and PathTrans.

(5) If ℓ = ⊤ then, by definition of get_relation, 𝑛 and𝑚 have different representatives. So by

(3) they must also be in different connected components.

For the reciprocal, if𝑛 and𝑚 are in different connected components, then they have different

representative by (3). Therefore, by definition of get_relation, get_relation (𝑈 , 𝑛, 𝑚) =
⊤

(6) If conflict is called, then HUniqeLabel does not hold. Indeed, when the call occurs, we

can easily show that (similarly to (4)) we have 𝑛
ℓ𝑛 ;̂inv(ℓ𝑚 )
−−−−−−−−→→𝑚 in 𝑈 , by (2), this is also true

in the graph of the edges. Since the graph of the edges also contains the edge we are adding

𝑛
ℓ−→𝑚, and since ℓ ≠ ℓ𝑛 ;̂ inv (ℓ𝑚), then it does not satisfy HUniqeLabel.

Conversely, if HUniqeLabel does not hold, then conflict will be called. Suppose the first

conflict comes at the 𝑘-th edge: take a list of edges (𝑛1, ℓ1,𝑚1), . . . (𝑛𝑘 , ℓ𝑘 ,𝑚𝑘 ) such that

HUniqeLabel holds on the graph induced by (𝑛1, ℓ1,𝑚1), . . . (𝑛𝑘−1, ℓ𝑘−1,𝑚𝑘−1) but not the
one induced by the full list.

We thus have two paths with different labels. One of these paths must include (𝑛𝑘 , ℓ𝑘 ,𝑚𝑘 ).
Using group operations on the edges, we can show that this implies there is another edge
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from 𝑛𝑘 to𝑚𝑘 with a different label ℓ that is already present in the graph induced by the

first 𝑘 − 1 edges.

By the proof of (2), since conflict was not called when adding these first 𝑘 − 1 edges, the

graph of𝑈 also contains that edge. Thus, 𝑛𝑘 and𝑚𝑘 have the same representative by (3).

Thus, when adding 𝑘-th edge, add_relation tests if the new edge ℓ𝑘 matches the previous

one. This test will succeed, we saw that ℓ𝑘 ≠ ℓ , and the edge built from the path to the

representatives in get_relation will be equal to ℓ (since both is are edges of the graph of

the 𝑘 − 1 first edges, which satisfy HUniqeLabel, and therefore unique).

To show the final point: we saw in the proof of (2) that when conflict is not called, both

graphs are equal.

(2)-2 Since when a conflict occurs, 𝑈 is not modified, we can remove the calls that lead to the

conflict call without changing 𝑈 . Doing so yields a smaller set of edges that triggers no

calls and generates the same graph. By (4), that graph must satisfy HUniqeLabel is equal

to the graph of𝑈 .

(4) ⇐ Take 𝑛
ℓ−→→𝑈 𝑚 then by (3) they have the same representative. get_relation will return a

non-⊤ value, which must be equal to ℓ by (2). □

Theorem 3.1. Let 𝑈 ∈ U be the union-find obtained by successive calls to init, add_relation,
find, and get_relation. If conflict does not modify 𝑈 , then, two nodes 𝑛 and𝑚 are related (i.e.,

there exists ℓ such that 𝑛
ℓ−→→ 𝑚 in 𝑈 ) if and only if they belong to the same tree (whose root is the

representative), and if and only if they would have been related in the graph whose edges are the
arguments of the successive calls to add_relation which did not trigger conflict. Furthermore:

(1) find terminates, returns the representative 𝑟 , and (𝑟, ℓ) ≜ find (𝑈 , 𝑛) ⇒ 𝑛
ℓ−→→ 𝑟 ;

(2) get_relation (𝑈 , 𝑛, 𝑚) = ℓ ≠ ⊤ if and only if 𝑛
ℓ−→→𝑚;

(3) get_relation (𝑈 , 𝑛, 𝑚) = ⊤ if and only if 𝑛 and𝑚 are not related;
(4) conflict is not called if and only if HUniqueLabel holds.

Proof. All of these are easy consequences of Lemma B.1. □

Proof of Theorem 3.2:

Theorem 3.2. Let (𝑈 , 𝐼 ) ∈ U-I be the result of a sequence of calls to add_relationI, get_info,
add_info after a first initI (), with (𝑚0, 𝑖0) . . . (𝑚𝑘 , 𝑖𝑘 ) the arguments passed to add_info. Then:

(1) the domain of 𝐼 is exactly the set of representatives of𝑈 (all accesses to 𝐼 are correct)
(2) if A distributes over ⊓I (i.e., A (ℓ, 𝑖 ⊓I 𝑗) = A (ℓ, 𝑖) ⊓I A (ℓ, 𝑗)), we have for all nodes 𝑛:

get_info ((𝑈 , 𝐼 ), 𝑛) =
/

I
0≤𝑝≤𝑘, 𝑛 and𝑚𝑝 in the same relational class

A
(
get_relation

(
𝑈 , 𝑛, 𝑚𝑝

)
, 𝑖𝑝

)
Proof. We first show that:

• dom 𝐼 is exactly the set of representatives of𝑈

• for all𝑛 ∈ dom 𝐼 , 𝐼 [𝑛] = .
I0≤𝑝≤𝑘, 𝑛 and𝑚𝑝 in same connected comp

A
(
get_relation

(
𝑈 , 𝑛, 𝑚𝑝

)
, 𝑖𝑝

)
We proceed by induction on the list of functions (add_relationI or add_info) applied to the empty

union-find:

• The result is initially true: when no union is performed, all elements are their own repre-

sentatives, so dom [𝑖 ∈ I ⇀ ⊤I] = I is indeed the set of all representatives.

Furthermore, as no information has been added, all meets are empty, thus equal to ⊤I.
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• Suppose the result is true for (𝑈 , 𝐼 ), let us show it holds after add_info ((𝑈 , 𝐼 ), 𝑛, 𝑖).
By construction, add_info modifies 𝐼 at 𝑟 , where (𝑟, ℓ) = find (𝑈 , 𝑛), which is indeed a

representative, so dom 𝐼 isn’t changed.

The result still holds for all representatives which are not 𝑟 , since by Theorem 3.1, they are

not in the same connected component as 𝑛, so both their value and the index-set of the ⊓I

are unchanged.

For 𝑟 , the new ⊓I is equal to the meet of old one (which is equal to 𝐼 [𝑟 ] by induction hypoth-

esis) and A (get_relation (𝑈 , 𝑟, 𝑛) , 𝑖). On the other hand, 𝐼 [𝑟 ] := 𝐼 [𝑟 ] ⊓I A (inv (ℓ) , 𝑖).
Since find (𝑈 , 𝑛) = (𝑟, ℓ), it is clear that get_relation (𝑈 , 𝑟, 𝑛) = inv (ℓ), so the equality
is indeed preserved.

• Suppose the result is true for (𝑈 , 𝐼 ), let us show it holds after add_relationI ((𝑈 , 𝐼 ), 𝑛, 𝑚, ℓ).
If 𝑛 and𝑚 are in the same class, then by Theorem 3.1, they have the same representative,

so add_relationI does not change (𝑈 , 𝐼 ).
If they are not, then their classes are merged, choosing a new representative randomly

between 𝑟𝑛 and 𝑟𝑚 . Both cases are symmetric, so we only show the case where 𝑟𝑛 is

updated to point to 𝑟𝑚 . In that case the new dom 𝐼 is equal to the old minus 𝑟𝑛 (since by

induction hypothesis, both 𝑟𝑛 and 𝑟𝑚 where in dom 𝐼 ). Thus, it is still exactly the set of all

representatives.

𝐼 [𝑟 ] has not been changed for all representatives not in the connected component of 𝑛

and 𝑚, so the equality still holds there. For 𝐼 [𝑟𝑛], the new value is 𝐼 [𝑟𝑚] := 𝐼 [𝑟𝑚] ⊓I

A (inv (inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚) , 𝐼 [𝑟𝑛]). The big-meet also has new elements, all of those that

come from the connected component of𝑚:

𝐼 [𝑟𝑚] = 𝐼 [𝑟𝑚] ⊓I A (inv (inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚) , 𝐼 [𝑟𝑛])

=
/

I
0≤𝑝≤𝑘, 𝑟𝑚 and𝑚𝑝 were in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑚, 𝑚𝑝

)
, 𝑖𝑝

)
⊓I A

©«inv (inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚) ,
/

I
0≤𝑝≤𝑘, 𝑟𝑛 and𝑚𝑝 were in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑛, 𝑚𝑝

)
, 𝑖𝑝

)ª®¬
By distributivity of meet/action and HActionCompose :

=
/

I
0≤𝑝≤𝑘, 𝑟𝑚 and𝑚𝑝 were in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑚, 𝑚𝑝

)
, 𝑖𝑝

)
⊓I

/
I

0≤𝑝≤𝑘, 𝑟𝑛 and𝑚𝑝 were in same connected comp

A
(
inv (inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚) ;̂ get_relation

(
𝑈 , 𝑟𝑛, 𝑚𝑝

)
, 𝑖𝑝

)
Since𝑈 [𝑟𝑛] is now (𝑟𝑚, inv (ℓ𝑛) ;̂ ℓ ;̂ ℓ𝑚) :

=
/

I
0≤𝑝≤𝑘, 𝑟𝑚 and𝑚𝑝 were in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑚, 𝑚𝑝

)
, 𝑖𝑝

)
⊓I

/
I

0≤𝑝≤𝑘, 𝑟𝑛 and𝑚𝑝 were in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑚, 𝑚𝑝

)
, 𝑖𝑝

)
The new connected comp of 𝑟𝑚 is the disjoint union of the old comps of 𝑟𝑚 and 𝑟𝑛 :

=
/

I
0≤𝑝≤𝑘, 𝑟𝑚 and𝑚𝑝 in same connected comp

A
(
get_relation

(
𝑈 , 𝑟𝑚, 𝑚𝑝

)
, 𝑖𝑝

)
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Finally, the full result on get_info is a direct consequence of the result on the representatives 𝐼 [𝑟 ]
combined with distributivity of the action and meet:

get_info (𝑈 , 𝑛)
= A (ℓ, 𝐼 [𝑟 ]) where (𝑟, ℓ) = find (𝑈 , 𝑛)

= A ©«ℓ,
/

I
0≤𝑝≤𝑘, 𝑟 and𝑚𝑝 in same connected comp

A
(
get_relation

(
𝑈 , 𝑟, 𝑚𝑝

)
, 𝑖𝑝

)ª®¬ by the above

=
/

I
0≤𝑝≤𝑘, 𝑟 and𝑚𝑝 in same connected comp

A
(
ℓ, A

(
get_relation

(
𝑈 , 𝑟, 𝑚𝑝

)
, 𝑖𝑝

) )
meet/action distribute

=
/

I
0≤𝑝≤𝑘, 𝑟 and𝑚𝑝 in same connected comp

A
(
ℓ ;̂ get_relation

(
𝑈 , 𝑟, 𝑚𝑝

)
, 𝑖𝑝

)
by HActionCompose

since 𝑛 and 𝑟 have same connected component, whose repr is 𝑟 :

=
/

I
0≤𝑝≤𝑘, 𝑛 and𝑚𝑝 in same connected comp

A
(
get_relation

(
𝑈 , 𝑛, 𝑚𝑝

)
, 𝑖𝑝

)
□

B.2 Proofs: Union-Find Labeled with Abstract Relations
Proof of Lemma 4.1:

Lemma 4.1. inv♯ is exact: ∀ R♯ ∈ R♯, 𝛾R♯ (inv♯ (R♯)) = 𝛾R♯ (R♯)−1.

Proof. Group theory says inv♯
is involutive: inv♯ ◦ inv♯

is identity. Proceed by double inclusion:

⊇ directly by HInverseSound;

⊆ 𝛾R♯ (R♯) = 𝛾R♯ (inv♯ (inv♯ (R♯))) ⊇ 𝛾R♯ (inv♯ (R♯))−1 by HInverseSound. Thus, we have

𝛾R♯ (R♯)−1 ⊇ 𝛾R♯ (inv♯ (R♯)) by monotony and involution of •−1. □

Proof of Lemma 4.2:

Lemma 4.2. 𝛾R♯ (id♯) ∈ P(V × V) is an equivalence relation between values.

Proof.

• Reflexivity: directly by HIdentitySound;

• Symmetry: since inv♯ (id♯) = id♯
, Lemma 4.1 implies 𝛾R♯ (id♯) = 𝛾R♯ (id♯)−1;

• Transitivity: 𝛾R♯ (id♯) = 𝛾R♯ (id♯ ;♯ id♯) ⊇ 𝛾R♯ (id♯) ; 𝛾R♯ (id♯) by HComposeSound. □

Proof of Theorem 4.3:

Theorem 4.3. An abstract relation R♯ ∈ R♯ represents a concrete injective partial function
𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) between the equivalence classes of the 𝛾R♯ (id♯) relation.

Proof. Take R♯
an abstract relation, 𝛾R♯ (R♯) is compatible with the classes of 𝛾R♯ (id♯):

• for all 𝑥, 𝑦, 𝑧 such that (𝑥,𝑦) ∈ 𝛾R♯ (R♯) and (𝑧, 𝑥) ∈ 𝛾R♯ (id♯), we can show that

(𝑧,𝑦) ∈ 𝛾R♯ (id♯ ;♯ R♯) = 𝛾R♯ (R♯) by symmetry of 𝛾R♯ (id♯) (Lemma 4.2) and HCompos-

eSound;

• similarly, (𝑥,𝑦) ∈ 𝛾R♯ (R♯) and (𝑦, 𝑧) ∈ 𝛾R♯ (id♯) implies (𝑥, 𝑧) ∈ 𝛾R♯ (R♯).
Furthermore, 𝛾R♯ (R♯) is injective and functional on those classes:
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• for all (𝑥, 𝑧) ∈ 𝛾R♯ (R♯) and (𝑦, 𝑧) ∈ 𝛾R♯ (R♯), we have (𝑥,𝑦) ∈ 𝛾R♯ (R♯) ; 𝛾R♯ (R♯)−1, so by

HInverseSound, monotony of ; and HComposeSound, (𝑥,𝑦) ∈ 𝛾R♯ (R♯ ;♯ inv♯ (R♯)) =

𝛾R♯ (id♯);
• similarly, for all (𝑥,𝑦) ∈ 𝛾R♯ (R♯) and (𝑥, 𝑧) ∈ 𝛾R♯ (R♯), we have (𝑦, 𝑧) ∈ 𝛾R♯ (id♯). □

Proof of Theorem 4.5:

Theorem 4.5. The following propositions are equivalent:
(1) 𝛾R♯ is a group morphism between

〈
R♯, ;♯, inv♯, id♯

〉
and the group of relations between

equivalence classes
〈
P

(
V/𝛾R♯ (id♯) × V/𝛾R♯ (id♯)

)
, ;, •−1, {(𝑣, 𝑣) | 𝑣 ∈ (V/𝛾R♯ (id♯))}

〉
;

(2) ;♯ is exact: ∀ R♯

1
R♯

2
∈ R♯, 𝛾R♯ (R♯

1
;♯ R♯

2
) = 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
);

(3) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is a total function;
(4) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is surjective;
(5) for all R♯, 𝛾R♯ (R♯) ∈ V/𝛾R♯ (id♯) ⇀ V/𝛾R♯ (id♯) is bijective.

Furthermore, if these hold then the lattice of abstract relations is flat: for all R♯

1
and R♯

2
such that

𝛾R♯ (R♯

1
) ⊆ 𝛾R♯ (R♯

2
), we have 𝛾R♯ (R♯

1
) = 𝛾R♯ (R♯

2
).

Proof.

1 ⇒ 2: Since 𝛾R♯ is a group morphism (1), we have ∀ R♯

1
R♯

2
∈ R♯, 𝛾R♯ (R♯

1
;♯ R♯

2
) = 𝜋

(
𝛾R♯ (R♯

1
)
)

;
𝜋
(
𝛾R♯ (R♯

2
)
)
where 𝜋 is the canonical projection from V to V/𝛾R♯ (id♯) lifted to relations.

Conclude using Theorem 4.3 which proved that 𝜋
(
𝛾R♯ (R♯)

)
= 𝛾R♯ (R♯):

2 ⇒ 3: let R♯ ∈ R♯
, for 𝑥 ∈ V, by Lemma 4.2 we know that (𝑥, 𝑥) ∈ 𝛾R♯ (id♯) = 𝛾R♯ (R♯ ;♯ inv♯ (R♯))

since ;♯ is exact (2), we have (𝑥, 𝑥) ∈ 𝛾R♯ (R♯) ;𝛾R♯ (inv♯ (R♯)). By definition of ;, there exists
𝑦 such that (𝑥,𝑦) ∈ 𝛾R♯ (R♯);

3⇔ 4: 𝛾 (R♯)−1 = 𝛾 (inv♯ (R♯)) by Lemma 4.1. If (3) holds then 𝛾 (inv♯ (R♯)) is a total function, so
its inverse must be subjective. Symmetrically, if (4) holds then the function is subjective, so

its inverse is total;

3,4 ⇒ 5: 𝛾 (R♯) is an injective partial function by Theorem 4.3, which is also total (3) and surjective

(4). Thus, it is bijective;

5 ⇒ 1 We already know 𝛾R♯ preserves inv♯
(Lemma 4.1). It also preserves id♯

since we reason

on equivalence classes. All that remains is to show it preserves composition ;♯ (i.e. that (2)
holds).

For R♯

1
R♯

2
∈ R♯

, HComposeSound gives 𝛾R♯ (R♯

1
;♯ R♯

2
) ⊇ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
).

For the reverse, take (𝑥,𝑦) ∈ 𝛾R♯ (R♯

1
;♯ R♯

2
). Since 𝛾R♯ (R♯

1
) is bijective (5) it is total, so

there exists 𝑧 such that (𝑥, 𝑧) ∈ 𝛾R♯ (R♯

1
). Similarly, there exists 𝑡 such that (𝑧, 𝑡) ∈ 𝛾R♯ (R♯

2
).

(𝑥, 𝑡) ∈ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
) ⊆ 𝛾R♯ (R♯

1
;♯ R♯

2
), so by bijectivity of R♯

1
;♯ R♯

2
, (𝑡, 𝑦) ∈ 𝛾R♯ (id♯).

Thus (𝑥,𝑦) ∈ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
) modulo 𝛾R♯ (id♯).

For the final property, it suffices to prove the reverse inclusion. Take (𝑥,𝑦) ∈ 𝛾R♯ (R♯

2
), Since

𝛾R♯ (R♯

1
) is total (3), there exists 𝑧 such that (𝑥, 𝑧) ∈ 𝛾R♯ (R♯

1
) ⊆ 𝛾R♯ (R♯

2
). Since 𝛾R♯ (R♯

2
) is functional

between equivalence classes (Theorem 4.3), (𝑦, 𝑧) ∈ 𝛾R♯ (id♯) and so, using Theorem 4.3 again gives

(𝑥,𝑦) ∈ 𝛾R♯ (R♯

1
) □

B.3 Proofs: Reduced Product with Non-Relational Domains
Proof of Theorem 5.2:

Theorem 5.2. If refine is exact then, for all states (𝑈 ,𝑀) ∈ U × (X → V♯) on which we

performed constraint propagation, and for all edges 𝑥
R♯

−−→→ 𝑦 in the saturated graph of 𝑈 , if we let
(𝑣 ♯

1
, 𝑣

♯

2
) ≜ refine(R♯, 𝑀 [𝑥], 𝑀 [𝑦]), we have 𝛾V♯ (𝑀 [𝑥]) ⊆ 𝛾V♯ (𝑣 ♯

1
) and 𝛾V♯ (𝑀 [𝑦]) ⊆ 𝛾V♯ (𝑣 ♯

2
).
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Proof. Proceed by structural induction on 𝑥
R♯

−−→→ 𝑦

• EdgePath: this edge is used for constraint propagation, so it has stabilized when the fixpoint

is reached;

• PathRefl: In that case 𝑥 = 𝑦 and R♯ = id♯
, let (𝑣 ♯

1
, 𝑣

♯

2
) ≜ refine(id♯, 𝑀 [𝑥], 𝑀 [𝑥]), by

HRefineSound we have:

𝛾V♯ (𝑣 ♯

1
) ⊇

{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑥]), (𝑣1, 𝑣2) ∈ 𝛾R♯ (id♯)
}

⊇
{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� (𝑣1, 𝑣1) ∈ 𝛾R♯ (id♯)
}

choosing 𝑣2 = 𝑣1
⊇ 𝛾V♯ (𝑀 [𝑥]) since (𝑣1, 𝑣1) ∈ 𝛾R♯ (id♯) by HIdentitySound

and similarly for 𝑣
♯

2
;

• PathSym: let (𝑣 ♯

1
, 𝑣

♯

2
) = refine(inv♯ (R♯), 𝑀 [𝑥], 𝑀 [𝑦]), by HRefineSound, we have:

𝛾V♯ (𝑣 ♯

1
) ⊇

{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), (𝑣1, 𝑣2) ∈ 𝛾R♯ (inv♯ (R♯))
}

∧ 𝛾V♯ (𝑣 ♯

2
) ⊇

{
𝑣2 ∈𝛾V♯ (𝑀 [𝑦])

�� ∃ 𝑣1 ∈ 𝛾V♯ (𝑀 [𝑥]), (𝑣1, 𝑣2) ∈ 𝛾R♯ (inv♯ (R♯))
}

so, by 𝐿𝑒𝑚𝑚𝑎 4.1

⇒ 𝛾V♯ (𝑣 ♯

1
) ⊇

{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), (𝑣2, 𝑣1) ∈ 𝛾R♯ (R♯)
}

∧ 𝛾V♯ (𝑣 ♯

2
) ⊇

{
𝑣2 ∈𝛾V♯ (𝑀 [𝑦])

�� ∃ 𝑣1 ∈ 𝛾V♯ (𝑀 [𝑥]), (𝑣2, 𝑣1) ∈ 𝛾R♯ (R♯)
}

⇒ 𝛾V♯ (𝑣 ♯

1
) ⊇ 𝛾V♯ (𝑣 ♯

1

′) ∧ 𝛾V♯ (𝑣 ♯

2
) ⊇ 𝛾V♯ (𝑣 ♯

2

′) by HRefineSound and exact

where (𝑣 ♯

2

′
, 𝑣

♯

1

′) = refine(R♯, 𝑀 [𝑦], 𝑀 [𝑥])

Finally, the induction hypothesis states 𝛾V♯ (𝑀 [𝑦]) ⊆ 𝛾V♯ (𝑣 ♯

2

′) and 𝛾V♯ (𝑀 [𝑥]) ⊆ 𝛾V♯ (𝑣 ♯

1

′);

• PathTrans: 𝑥
R♯

1
;♯R♯

2−−−−−−→→ 𝑦 is built from 𝑥
R♯

1−−→→ 𝑧 and 𝑧
R♯

2−−→→ 𝑦.

Let (𝑣 ♯

1
, 𝑣

♯

2
) = refine(R♯

1
;♯ R♯

2
, 𝑀 [𝑥], 𝑀 [𝑦]). We will show the result for 𝑣

♯

1
, as the result for

𝑣
♯

2
can be obtained in symmetrically:

𝛾V♯ (𝑣 ♯

1
) = 𝛾V♯ (fst(refine(R♯

1
;♯ R♯

2
, 𝑀 [𝑥], 𝑀 [𝑦])))

by HRefineSound

⊇
{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
;♯ R♯

2
)
}

applying HComposeSound gives:

⊇
{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
)
}

⊇
{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), ∃𝑣3, (𝑣1, 𝑣3) ∈ 𝛾R♯ (R♯

1
) ∧ (𝑣3, 𝑣2) ∈ 𝛾R♯ (R♯

2
)
}

since ∃𝑣3, 𝜙 ⇒ ∃𝑣3 ∈ 𝛾V♯ (𝑀 [𝑧]), 𝜙

⊇
{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

���� ∃𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), ∃𝑣3 ∈ 𝛾V♯ (𝑀 [𝑧]),
(𝑣1, 𝑣3) ∈ 𝛾R♯ (R♯

1
) ∧ (𝑣3, 𝑣2) ∈ 𝛾R♯ (R♯

2
)

}
The induction hypothesis on 𝑧

R♯

2−−→→ 𝑦 and exactness of refine gives :

𝛾V♯ (𝑀 [𝑧]) ⊆
{
𝑣 ∈ 𝛾V♯ (𝑀 [𝑧])

�� ∃ 𝑣2 ∈ 𝛾V♯ (𝑀 [𝑦]), (𝑣, 𝑣2) ∈ 𝛾R♯ (R♯

2
)
}

so we can remove the ∃𝑣2 :
⊇

{
𝑣1 ∈𝛾V♯ (𝑀 [𝑥])

�� ∃𝑣3 ∈ 𝛾V♯ (𝑀 [𝑧]), (𝑣1, 𝑣3) ∈ 𝛾R♯ (R♯

1
)
}

⊇ 𝛾V♯ (fst(refine(R♯

1
, 𝑀 [𝑥], 𝑀 [𝑧]))) by exactness of refine

⊇ 𝛾V♯ (𝑀 [𝑥]) by induction hypothesis □

Proof of Lemma 5.3
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Lemma 5.3. If refine satisfies HRefineSound, thenA(R♯, 𝑣 ♯) ≜ fst(refine(R♯,⊤V♯ , 𝑣 ♯)) satisfies
HActionSound. If refine is exact (HRefineSound with ⊇ replaced by =), then so is A.

Proof. If refine is sound, then we have:

𝛾V♯ (A(R♯, 𝑣 ♯)) = 𝛾V♯ (fst(refine(R♯,⊤V♯ , 𝑣
♯))) by definition

⊇
{
𝑣1 ∈ 𝛾V♯ (⊤V♯ )

�� ∃𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)
}

by HRefineSound

=
{
𝑣1

�� ∃𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)
}

since 𝛾V♯ (⊤V♯ ) = V

Furthermore, in the exact case, ⊇ is an equality. □

Proof of Lemma 5.4: Since soundness and exactness hypothesis only express inequalities in the

concrete, we will have to reason under both 𝛾V♯ and 𝛾R♯ (id♯). To simplify notation we write:

• ≡ ∈ P (V × V) for equality modulo 𝛾R♯ (id♯): 𝑣0 ≡ 𝑣1 ≜ (𝑣0, 𝑣1) ∈ 𝛾R♯ (id♯).
• ⫅ ∈ P (P (V) × P (V)) for set inclusion modulo 𝛾R♯ (id♯):𝑉 ⫅ 𝑉 ′ ≜ ∀𝑣 ∈𝑉 , ∃𝑣 ′ ∈𝑉 ′, 𝑣 ≡ 𝑣 ′.
• ≖ ∈ P (P (V) × P (V)) for set equality modulo 𝛾R♯ (id♯), defined by double-inclusion.

Note that when 𝛾R♯ (id♯) is equality, these definitions coincide with normal equality and subset

relations. In the general case however, they are weaker than equality/subset. We will now restate

our hypotheses using these weaker relations:

𝛾V♯

(
A

(
R♯

1
;♯ R♯

2
, 𝑣 ♯

) )
≖ 𝛾V♯

(
A

(
R♯

1
, A

(
R♯

2
, 𝑣 ♯

) ) )
(HActionCompose2)

𝛾V♯

(
A

(
id♯, 𝑣 ♯

) )
≖ 𝛾V♯ (𝑣 ♯) (HActionIdentity2)

𝛾V♯ (A(R♯, 𝑣 ♯)) ⫆ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)} (HActionSound2)

𝛾V♯ (A(R♯, 𝑣 ♯)) ≖ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)} (HActionCompl2)

𝛾V♯ (fst(refine(R♯, 𝑣
♯

1
, 𝑣

♯

2
))) ⫆

{
𝑣1 ∈𝛾V♯ (𝑣 ♯

1
)
�� ∃𝑣2 ∈ 𝛾V♯ (𝑣 ♯

2
), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)

}
(HRefineSound2)

𝛾V♯ (fst(refine(R♯, 𝑣
♯

1
, 𝑣

♯

2
))) ≖

{
𝑣1 ∈𝛾V♯ (𝑣 ♯

1
)
�� ∃𝑣2 ∈ 𝛾V♯ (𝑣 ♯

2
), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)

}
(HRefineCompl2)

These hypotheses are weaker than the ones stated using equality/subset. Meaning that, for example,

HActionSound implies HActionSound2. When 𝛾R♯ (id♯) is equality however, they are equivalent.
For instance, we can re-formulate Lemma 5.3 with the weaker premises. Note that it also has

weaker conclusions, meaning this result is not implied by Lemma 5.3.

Lemma B.2. If refine satisfies HRefineSound2 then A(R♯, 𝑣 ♯) ≜ fst(refine(R♯,⊤V♯ , 𝑣 ♯)) satis-
fies HActionSound2. Furthermore, if refine is satisfies HRefineCompl2, then A satisfies HAction-
Compl2.

Proof. Same proof as in Lemma 5.3, swapping out the hypotheses for their weaker variants. □

Lemma B.3. If A satisfies HActionCompl2 and any of the points of Theorem 4.5 hold, then it
satisfies HActionCompose2 and HActionIdentity2.

Proof. Let us start by proving HActionIdentity2:

𝛾V♯ (A
(
id♯, 𝑣 ♯

)
) ≖ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (id♯)} by HActionCompl2

⫅ 𝛾V♯ (𝑣 ♯) by definition of ⫆
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The other inclusion comes from HIdentitySound:

𝛾V♯ (𝑣 ♯) = {𝑣1 | 𝑣1 ∈ 𝛾V♯ (𝑣 ♯)}
⊆ {𝑣1 | 𝑣1 ∈ 𝛾V♯ (𝑣 ♯) ∧ (𝑣1, 𝑣1) ∈ 𝛾R♯ (id♯)} by HIdentitySound

⊆ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (id♯)}
⫅ 𝛾V♯ (A

(
id♯, 𝑣 ♯

)
) by HActionCompl2

We can now work on HActionCompose2:

𝛾V♯ (A
(
R♯

1
;♯ R♯

2
, 𝑣 ♯

)
) ≖ {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
;♯ R♯

2
)} by HActionCompl2

= {𝑣1 | ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
) ; 𝛾R♯ (R♯

2
)} by 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.5 (2)

= {𝑣1 | ∃ 𝑣3, ∃ 𝑣2 ∈ 𝛾V♯ (𝑣 ♯), (𝑣1, 𝑣3) ∈ 𝛾R♯ (R♯

1
) ∧ (𝑣3, 𝑣2) ∈ 𝛾R♯ (R♯

2
)}

≖ {𝑣1 | ∃ 𝑣3 ∈ 𝛾V♯ (A
(
R♯

2
, 𝑣 ♯

)
), (𝑣1, 𝑣3) ∈ 𝛾R♯ (R♯

1
)} by HActionCompl2

≖ 𝛾V♯ (A
(
R♯

1
, 𝛾V♯ (A

(
R♯

2
, 𝑣 ♯

)
)
)
) by HActionCompl2 □

Lemma B.4. If A satisfies HActionCompose2 and HActionIdentity2, and any of the points of
Theorem 4.5 hold, then it satisfies HActionCompl2.

Proof.

𝛾V♯ (𝑣 ♯) ≖ 𝛾V♯ (A(id♯, 𝑣 ♯)) by HActionIdentity2

= 𝛾V♯ (A(inv♯ (R♯) ;♯ R♯, 𝑣 ♯))
≖ 𝛾V♯ (A(inv♯ (R♯), A(R♯, 𝑣 ♯))) by HActionCompose2

⫆ {𝑣 | ∃ 𝑣 ′ ∈ 𝛾V♯ (A(R♯, 𝑣 ♯)), (𝑣, 𝑣 ′) ∈ 𝛾R♯ (inv♯ (R♯))} by HActionSound2

⫆ {𝑣 | ∃𝑣 ′, ∃ 𝑣 ′′ ∈ 𝛾V♯ (𝑣 ♯), (𝑣, 𝑣 ′) ∈ 𝛾R♯ (inv♯ (R♯)) ∧ (𝑣 ′, 𝑣 ′′) ∈ 𝛾R♯ (R♯)} by HActionSound2

⫆ {𝑣 ∈ 𝛾V♯ (𝑣 ♯) | ∃𝑣 ′, (𝑣, 𝑣 ′) ∈ 𝛾R♯ (inv♯ (R♯)) ∧ (𝑣 ′, 𝑣) ∈ 𝛾R♯ (R♯)} by choosing 𝑣 ′′ = 𝑣

= {𝑣 ∈ 𝛾V♯ (𝑣 ♯) | (𝑣, 𝑣) ∈ 𝛾V♯ (inv♯ (R♯)) ; 𝛾V♯ (R♯)}
= {𝑣 ∈ 𝛾V♯ (𝑣 ♯) | (𝑣, 𝑣) ∈ 𝛾V♯ (inv♯ (R♯) ;♯ R♯)} by 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 4.5 (2)
⊇ {𝑣 ∈ 𝛾V♯ (𝑣 ♯) | (𝑣, 𝑣) ∈ {(𝑣, 𝑣) | 𝑣 ∈ V}} by HIdentitySound

= 𝛾V♯ (𝑣 ♯)

Therefore, every ⫆ in the chain is really an equivalence. In particular, the second usage of HAc-

tionSound is an equivalence, which implies the desired exactness equality. □

Lemma 5.4. Assume any of the points of Theorem 4.5 hold. If A satisfies HActionSound then A is
exact (we can replace ⊇ by = in HActionSound) if and only if it is a group action.

Proof. It is a simplification of the statements of Lemma B.3 and Lemma B.4 when 𝛾V♯ is injective

and 𝛾R♯ (id♯) is equality. Note that Lemma B.4 also holds with the stronger hypotheses, and (proved

in exactly the same way), so the assumption are only really needed for the direct implication (any

sound A is an action). □

Proof of Theorem 5.6:We start by stating the general form of this theorem, when the assumption

on 𝛾V♯ and 𝛾R♯ (id♯) do not hold:
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Lemma B.5. If A and ⊓V♯ are both sound and exact then:

∀ 𝑣 ♯ R♯

1
R♯

2
, 𝛾V♯

(
A

(
R♯, 𝑣

♯

1
⊓V♯ 𝑣

♯

2

) )
≖ 𝛾V♯

(
A

(
R♯, 𝑣

♯

1

)
⊓V♯ A

(
R♯, 𝑣

♯

2

) )
Thus, similarly to Theorem 3.2, for a union-find (𝑈 , 𝐼 ) ∈ U-I whose known abstract values passed to
add_info where (𝑦0, 𝑣 ♯

0
), . . . , (𝑦𝑘 , 𝑣 ♯

𝑘
), we have:

𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑥)) ≖ 𝛾V♯

( /
V♯

𝑥 and 𝑦𝑝 related by R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))
Therefore, in that case, using map factorization is just as precise as performing constraint propagation.

Proof. Let R♯ ∈ R♯
, 𝑣

♯

1
, 𝑣

♯

2
∈ V♯

and 𝑣 ∈ V, then:

𝛾V♯

(
A

(
R♯, 𝑣

♯

1
⊓V♯ 𝑣

♯

2

) )
≖ {𝑣 | ∃ 𝑣 ′ ∈ 𝛾V♯ (𝑣 ♯

1
⊓V♯ 𝑣

♯

2
), (𝑣, 𝑣 ′) ∈ 𝛾R♯ (R♯)} A sound and exact

= {𝑣 | ∃ 𝑣 ′ ∈ 𝛾V♯ (𝑣 ♯

1
) ∩ 𝛾V♯ (𝑣 ♯

2
), (𝑣, 𝑣 ′) ∈ 𝛾R♯ (R♯)} ⊓V♯ sound and exact

≖ 𝛾V♯ (A
(
R♯, 𝑣

♯

1

)
) ∩ 𝛾V♯ (A

(
R♯, 𝑣

♯

2

)
) A sound and exact

= 𝛾V♯

(
A

(
R♯, 𝑣

♯

1

)
⊓V♯ A

(
R♯, 𝑣

♯

2

) )
⊓V♯ sound and exact

Next, we can prove the fact that the value of a variable has the same concretization as the meet

of all its related values in the same way as in Theorem 3.2. While we do not have full action-meet

commutation here, we have it under 𝛾V♯ , which is sufficient to repeat the proof.

To show the fact that we are at least as precise, it suffices to show that for a given application

of refine with (𝑣 ♯

𝑥 , 𝑣
♯

𝑦) ≜ refine(R♯, 𝜎 (𝑥), 𝜎 (𝑦)), if 𝛾V♯ (𝜎 (𝑥)) ⫅ 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑥)) and
𝛾V♯ (𝜎 (𝑦)) ⫅ 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑦)), then we also have𝛾V♯ (𝑣 ♯

𝑥 ) ⫅ 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑥)) and
𝛾V♯ (𝑣 ♯

𝑦) ⫅ 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑦)). Since those inequalities hold at the start (where all abstract

values are top), then by induction, they will never cease to hold.

By symmetry, we only have to show the result on 𝑥 :

𝛾V♯ (𝑣 ♯

𝑥 ) ⫆
{
𝑣1 ∈𝛾V♯ (𝜎 (𝑥))

�� ∃𝑣2 ∈ 𝛾V♯ (𝜎 (𝑦)), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)
}

by HRefineSound2

⫆
{
𝑣1 ∈𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑥))

�� ∃𝑣2 ∈ 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑦)), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)
}

therefore, by the equality on 𝛾V♯ (get_info ((𝑈 , 𝐼 ), 𝑥)) :

≖

𝑣1 ∈𝛾V♯

( /
V♯

𝑥,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

)) ������� ∃𝑣2 ∈ 𝛾V♯

( /
V♯

𝑦,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))
, (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)


≖ 𝛾V♯

( /
V♯

𝑥,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))
∩ 𝛾V♯

©«A
(
R♯,

/
V♯

𝑦,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))ª®®¬ by HActionCompl2

≖ 𝛾V♯

( /
V♯

𝑥,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))
∩ 𝛾V♯

©«
/

V♯

𝑦,𝑦𝑝 ,R♯
𝑝

A
(
R♯ ;♯ R♯

𝑝 , 𝑣
♯

𝑝

)ª®®¬ by previous result

since 𝑥
R♯

−−→→ 𝑦 we can relabel the second meet :

≖ 𝛾V♯

( /
V♯

𝑥,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

))
∩ 𝛾V♯

©«
/

V♯

𝑥,𝑦𝑝 ,R♯
𝑝

A
(
R♯

𝑝 , 𝑣
♯

𝑝

)ª®®¬ by previous result □



Relational Abstractions Based on Labeled Union-Find (with appendices) 195:39

Theorem 5.6. If A and ⊓V♯ are both sound and exact then:

∀ 𝑣
♯

1
𝑣
♯

2
R♯, A

(
R♯, 𝑣

♯

1
⊓V♯ 𝑣

♯

2

)
= A

(
R♯, 𝑣

♯

1

)
⊓V♯ A

(
R♯, 𝑣

♯

2

)
Proof. It is a simplification of Lemma B.5 when 𝛾V♯ is injective and 𝛾R♯ (id♯) is equality. □

B.4 Proofs: Abstract Join: Immutable Labeled Union-Find Intersection
Proof of Theorem A.1:

Theorem A.1 (Inter correction and complexity). For (𝑈1,𝐶1) and (𝑈2,𝐶2) ∈ UC satisfying
the invariants, then (𝑈𝑖 ,𝐶𝑖 ) ≜ inter ((𝑈1,𝐶1), (𝑈2,𝐶2)) also satisfies these invariants and for all 𝑛,
𝑚, ℓ :

get_relation (𝑈1, 𝑛, 𝑚) = ℓ = get_relation (𝑈2, 𝑛, 𝑚) ⇔ get_relation (𝑈𝑖 , 𝑛, 𝑚) = ℓ

It runs in O(Δ2 log2 𝑛) where 𝑛 = |𝑈1 | + |𝑈2 | and Δ is the number of different bindings between them.

Proof. First, looking at all times elements are added to𝑀 , it is easy to show that for all 𝑟1, 𝑟2:

∀ (𝑛, ℓ1, ℓ2) ∈ 𝑀 [𝑟1, 𝑟2], ℓ1 = get_relation (𝑈1, 𝑟1, 𝑛) ∧ ℓ2 = get_relation (𝑈2, 𝑟2, 𝑛) (HM)

Proving the Invariants
Eager compression: lets examine the bindings added to𝑈𝑖 :

• Some come from the intersection, so they are equal to the bindings of 𝑈1 and 𝑈2, which

point directly to their representative. It follows that this representative points to itself in

both𝑈1 and𝑈2, so it is also pointing to itself in the intersection.

• Some come from the combining function, those are either self-pointing (therefore eager) or

point to an element from𝑀 . Since all elements added to𝑀 are self pointing, this is still a

directly pointing to a representative.

Representatives point to themselves: our intersection does not remove any element from𝑈1 and

𝑈2 (which must be total functions if they satisfy the invariant). Thus,𝑈𝑖 is also a total function (the

representatives must point somewhere). By the eager compression invariant, they must point to

themselves.

Representatives are minimal: suppose 𝑛 points to 𝑟 , as seen above, if 𝑛’s binding comes from the

intersection, so does 𝑟 ’s. They thus satisfy the invariant 𝑛 > 𝑟 .

If 𝑛’s binding comes from the combining function, it is either a self-binding 𝑛 = 𝑟 , or a binding

to an element added to𝑀 before 𝑛. If that element was added to𝑀 inside the combine function,

then it must be smaller than 𝑛 since the combine function sees elements in increasing order.

In the other case, it was added by the 𝐶1 ∩𝐶2 merge. This means 𝑟 was a representative in 𝑈1

and 𝑈2. Since we then have 𝑛
ℓ1−→→𝑈1

𝑟1 and 𝑟1
ℓ ′
1−→→𝑈1

𝑟 (by HM), it follows that 𝑛 is in the connected

component of 𝑟 in𝑈1, and must thus be bigger than 𝑟 .

𝐶𝑖 is indeed the set of connected components of 𝑈𝑖 : After the 𝐶1 ∩ 𝐶2 intersection, 𝐶𝑖 is equal

to [𝑟 ↦→𝐶1 [𝑟 ] ∩𝐶2 [𝑟 ] | 𝑟 representative in both𝑈1,𝑈2]. Now consider how 𝐶𝑖 evolves during the

𝑈1 ∩𝑈2 intersection:

• Elements that are not seen by the combining function have a representative 𝑟 that was a

representative in both𝑈1 and𝑈2, so they are already in the correct connected component

and are not moved.
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• The first item of 𝑀 [𝑟1, 𝑟2] will always start with an associated class 𝐶1 [𝑟1] ∩ 𝐶2 [𝑟2], so
elements that match this item also already in the correct connected component.

Elements that don’t match the first item are removed from this connected component, and

added to the component they do match.

Elements that match nothing are in no connected component (since they were removed

if the list is not empty, and never contained in the intersection if it is). They are added to

their own component once out of the loop (if 𝑛 has representatives 𝑟1 and 𝑟2, then it must

be in 𝐶1 [𝑟1] ∩𝐶2 [𝑟2]).

Proving Correctness
Let us take 𝑛,𝑚, ℓ such that get_relation (𝑈1, 𝑛, 𝑚) = ℓ = get_relation (𝑈2, 𝑛, 𝑚). Let 𝑟 be
the smallest element in the connected component of 𝑛 and𝑚 such that get_relation (𝑈1, 𝑛, 𝑟 ) =
get_relation (𝑈1, 𝑛, 𝑟 ) and get_relation (𝑈1, 𝑚, 𝑟 ) = get_relation (𝑈1, 𝑚, 𝑟 ) (it exists as
a min of a non-empty set (it must contain 𝑛)). We also let (𝑟1, ℓ1,𝑛) = find (𝑈1, 𝑛), (𝑟1, ℓ1,𝑚) =

find (𝑈1, 𝑚) (they have same representative by Theorem 3.1) and similarly for𝑈2. Graphically:

𝑛 𝑚
ℓ

𝑟

𝑟1

In𝑈1:

ℓ𝑛 ℓ𝑚

ℓ1,𝑛 ℓ1,𝑚

ℓ1,𝑟

𝑛 𝑚
ℓ

𝑟

𝑟2

In𝑈2:

ℓ𝑛 ℓ𝑚

ℓ2,𝑛 ℓ2,𝑚

ℓ2,𝑟

𝑛 𝑚
ℓ

𝑟

In𝑈𝐼 :

ℓ𝑛 ℓ𝑚

• Case 𝑟 = 𝑟1 = 𝑟2: in that case, the nodes 𝑛 and𝑚 are never seen in the custom combining

function since 𝑈1 [𝑛] = (𝑟, ℓ𝑛) = 𝑈2 [𝑛] and same for𝑚. Thus, they are preserved by the

intersection:𝑈𝑖 [𝑛] = (𝑟, ℓ𝑛) and same for𝑚, so ℓ = get_relation (𝑈𝑖 , 𝑛, 𝑚);
• Otherwise, 𝑟1 ≠ 𝑟2 or 𝑟 ≠ 𝑟1: In that case, 𝑟 will be examined by the combining function.

Indeed, if 𝑟1 ≠ 𝑟2 then 𝑈1 [𝑟 ] = (𝑟1, ℓ1,𝑟 ) ≠ (𝑟2, ℓ2,𝑟 ) = 𝑟2. But if 𝑟1 = 𝑟2 ≠ 𝑟 , we must have

ℓ1,𝑟 ≠ ℓ2,𝑟 . Otherwise, ℓ1,𝑛 = ℓ𝑛 ;̂ ℓ1,𝑟 = ℓ𝑛 ;̂ ℓ2,𝑟 = ℓ2,𝑚 and same for𝑚, which contradicts the

fact that 𝑟 is minimal.

In the combining function, it will not match any element in𝑀 [𝑟1, 𝑟2], (if it does, then that

element would be smaller than 𝑟 and also have the same relation to 𝑛 and𝑚...). Therefore,

(𝑟, inv
(
ℓ1,𝑟

)
, inv

(
ℓ2,𝑟

)
) will be added to𝑀 [𝑟1, 𝑟2], and𝑈𝑖 [𝑟 ] = (𝑟, id).

We will thus have𝑈𝑖 [𝑛] = (𝑟, ℓ𝑛). If 𝑛 = 𝑟 then the result is immediate, otherwise 𝑛 and will

(later) be examined by the combining function, It will match (𝑟, inv
(
ℓ1,𝑟

)
, inv

(
ℓ2,𝑟

)
) since

ℓ1,𝑛 ;̂ ℓ1,𝑟 = ℓ𝑛 (and same for 2). Note that it cannot match any of the previous list items since

𝑟 is minimal and the list is clearly increasing. The same reasoning gives𝑈𝑖 [𝑚] = (𝑟, ℓ𝑚).
Since ℓ = ℓ𝑛 ;̂ ℓ𝑚 , the condition still holds.

For the reciprocal, we can show that the saturated graph generated by 𝑈𝑖 is included in that

of𝑈1. All points added to𝑈𝑖 either come from𝑈1 directly; are self representative; or are built by

𝑈𝑖 [𝑛] = (𝑟, ℓ1 ;̂ ℓ ′
1
) where find (𝑈1, 𝑛) = (𝑟1, ℓ1) and ℓ ′

1
= get_relation (𝑈1, 𝑟1, 𝑟 ) by HM. Thus,

we clearly have get_relation (𝑈1, 𝑛, 𝑟 ) = ℓ1 ;̂ ℓ ′
1
.

The saturated graph is also included in𝑈2, since the algorithm is quite symmetrical. Thus, and

edge that appears in the graph generated by𝑈𝑖 must also appear in the graphs generated by𝑈1 and

𝑈2.
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Proving Complexity
Let us count operations following the algorithm. The first operation is the connected component

intersection. Since it’s a Patricia-tree fast intersection, it is in O(diff × fun × log(size)). Here size
is the number of connected components, bounded by 𝑛. Diff is the number of components with

non-equal values, it is bounded by 𝑑 (Each pair of non-equal connected components can be mapped

to a point where they differ, such a point would be counted in 𝑑). Finally, fun is the complexity of

the combining function. Here it performs a connected component intersection, so it also O(𝑑 log𝑛)
when using Patricia trees to represent sets. Thus, this first operation is O(𝑑2 log2 𝑛).

The intersection of𝑈1 and𝑈2 is also O(diff× fun× log(size)), but here size is 𝑛, diff is 𝑑 . For the

combining function:

• The loop is in O(𝑑 + log𝑛): indeed, the set insertion/deletion that occurs in the loop occur

only on a single iteration, so they can be counted apart, as a single O(log𝑛). The loop itself

executes at most 𝑑 times, because for a given 𝑟1, 𝑟2, the length of 𝑀 [𝑟1, 𝑟2] is bound by 1

plus the number of differing elements (which are those seen in the combining function).

• Out of the loop, we have two connected component lookups (O(log𝑛)), one 𝑀 lookup

and write (O(log(𝑛 ∗ 𝑛)) = O(2 log(𝑛)) = O(log𝑛)), and one connected set intersection

(O(𝑑 log𝑛))
So the total cost of the combining function if O(𝑑 + log𝑛 + log𝑛 +𝑑 log𝑛) = O(𝑑 log𝑛). Therefore,
the cost of this second intersection is also O(𝑑2 log2 𝑛). □
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