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The need for automated memory analysis

Memory safety errors are the most pervasive and most severe cybersecurity issue today J

“~70% of the vulnerabilities addressed through a security update each year continue to be memory
safety issues”
- M. Miller (Microsoft Security Response Center), Blue Hat 2019

“63% of 2019's exploited 0-day vulnerabilities fall under memory corruption”
- Google’s project zero, "A Year in Review of 0-days Used In-The-Wild in 2019”
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Memory safety errors are the most pervasive and most severe cybersecurity issue today J

“~70% of the vulnerabilities addressed through a security update each year continue to be memory
safety issues”
- M. Miller (Microsoft Security Response Center), Blue Hat 2019

“63% of 2019's exploited 0-day vulnerabilities fall under memory corruption”
- Google’s project zero, "A Year in Review of 0-days Used In-The-Wild in 2019”

Structural invariants on memory are the backbone of the proof in systems programs J

“Much of the kernel-call code is directed at maintaining [data-structure] invariants”
- Walker et al., Specification and Verification of the UCLA Unix Security Kernel, 1980

“There are four main categories of invariants in our proof: 1. low-level memory invariants, 2.
typing invariants, 3. data structure invariants, and 4. algorithmic invariants. [...] 80% of the effort
[...] went into establishing invariants.”

- Klein et al., Comprehensive Formal Verification of an OS Microkernel, 2015

=» Need for a practical automated memory analysis for low-level languages.
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Families of automated memory analyses

. Automation  Proves Proves Low-level
Analysis
. & Easeof = memory structural code
efficiency . . .
setup safety  invariants  (binary)

Pointer analyses ++ ++ -- - ~
Shape analyses - ~ ++ ++ ~

Our approach: ' N N N N .

Type-based analysis

Our goal

Analysis efficiency + Easy setup + Spatial Memory Safety + Structural Constraints
On C and machine code
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Our approach: type-based abstract interpretation

Our approach

An abstract interpretation that
o simultaneously relies on and establishes type safety

o using a dedicated type system designed for abstract interpretation.
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Our approach: type-based abstract interpretation

Our approach

An abstract interpretation that
o simultaneously relies on and establishes type safety

o using a dedicated type system designed for abstract interpretation.

Existing works on automated type-based static analysis either are:
o Static analyses that assume type safety;

@ Or syntactic and decidable type inference algorithms
that are insufficiently precise for systems code.
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Overview

We start from standard & untyped concrete semantics for machine code... J
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Overview

We add types to tag the memory and the variables... J
type data = word with self <= 10; type node = struct { node.(0)*; data }
p +— 0x1000 P N2 p+— node.(0)*
n+— Oxabcd oxfooc| 1| o0 | 2 | n+— word
0x1000  0x1004 0x100c  0x1010
J  n==xp
p 1 n
p — 0x1000 I—& p — node.(0)*
n+— 0x100c oxfooc| 1| [ o0 | 2 | n+— node.(0)*
0x1000  0x1004 0x100c  0x1010 ’
4 xn=p
p
p — 0x1000 rL} %’1 p — node.(0)*
n+— 0x100c oxfooc| 1| oxiboo| 2 | n+— node.(0)*
0x1000  0x1004 0x100c  0x1010 )
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Overview

Type domain is just type of the variables + invariant that states are well-typed J

type data = word with self <= 10;

0. Nicole, M. Lemerre, X. Rival

type node = struct { node.(0)*; data }

[ p — node.(0)* ]

n+— word
b n==xp
[ p — node.(0)* ]
n+— node.(0)*
J #n=p

p — node.(0)*
n+— node.(0)*
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Overview

The full analysis adds numerical constraints and points-to predicates J
type data = word with self <= 10; type node = struct { node.(0)*; data}
p— T p — node.(0)*
m#£0
n—n n+— word
4 n==xp
" 4e.(0)
p—m « p — node.(0)*
<
m#0 f<10 {nr—>a] B [nn—)node.(O)*]
J #n=p
™ a l
740 B<10 p— T T 0 p — node.(0)*
a#0 6<10 n— o B 0 n+— node.(0)*
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Outline and contributions

@ Typed concrete semantics
@ Structural invariants expressed by types

© Abstract domains
@ Type-based domain
@ Points-to predicates domain

© Experiments on shape benchmark and binary-level microkernel verification
o Existing shape benchmarks (C + binary)
@ Verification of memory safety + preservation of light structural invariants

@ Verification of absence of privilege escalation
@ Of a full commercial microkernel
@ From its binary executable

@ Conclusion
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Outline

@ Typed concrete semantics
@ Structural invariants expressed by types




Types 2t = wordy (base type of size k bytes)
| n (named type with type name n € Names)
| tox (possibly null pointer)
|  struct{t;t}  (record type)
| tls] (array type)
| twithpred (type with a refinement predicate)
Typesg 5t, == t.(0) (type with offset o € N)

Definitions € Names — Types

type data = word, with self < 10;
type node = struct { node.(0)*; data}
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Heaps and labellings

h > Heap = Address — Value
oo + T ool 2]

0x1000 0x1004 0x100c  0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..
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Heaps and labellings

h 5 Heap = Address — Value I_k 1
L > Labellings = Address — Types, oxfboc] 1| [oxo | 2 |
0x1000  0x1004 0x100c  0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..

o Labellings are whole and contiguous:

L[0x1000 — 0x1007] = node <=
L[0x1000] = node.(0) A ... A L][0x1007] = node.(7)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types



Heaps and labellings

h 5 Heap = Address — Value |_$ 1
L > Labellings = Address — Types, oxfboc] 1| [oxo | 2 |
0x1000  0x1004 0x100c  0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..

o Labellings are whole and contiguous:

L[0x1000 — 0x1007] = node <=
L[0x1000] = node.(0) A ... A L][0x1007] = node.(7)

o This allows safe pointer arithmetics:
Safe Pointer Arithmetics

ep:t(o)x e dvi#0 0<o+i<size(t)
e+i:t.(o+1i)x
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The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

‘ node*.(0) ‘ node*.(1) ‘ node*.(2) ‘ node*.(3) ‘ data.(0) ‘ data.(1) ‘ data.(2) ‘ data.(3) ‘

‘ node.(0) ‘ node.(1) ‘ node.(2) ‘ node.(3) ‘ node.(4) ‘ node.(5) ‘ node.(6) ‘ node.(7) ‘
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The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
T T L B B

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)
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The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
T T L B B

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

Theorem: Containment relation <€ Types, x Types is an order relation.

rollary:
Corollary Subtyping

e:t.(0)x  t(o) X u.(i)

e:u.(i)*
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The lattice of types with offset, subtyping, aliasing

type data =word, with self < 10;
type node = struct { node.(0)*; data}

//\\

word4.(0)  word4.(1)  wordy.( wordy.(
node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
L T T P B ]

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)
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The lattice of types with offset, subtyping, aliasing

type data =word, with self < 10;
type node = struct { node.(0)*; data}

//\\

word4.(0)  word4.(1)  wordy.( wordy.(
node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
L T T P B ]

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

Theorem: The semi-lattice (Typesy, <) is a tree

Corollary: No.Alias
e s t(o)x  eg:u.(i)x
et dvi  e2 v
t.(o) Zu.(i) u.(i) Zt.(0)
v1 7 v2
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Interpretation of a type

Using labellings £, types can be interpreted as a set of values. J

(-)z : Types — P(V)
(wordy )z =V,
(twithp)z = {v € (t) | eval(p,v) = true}

(tox)c ={a€eA|L(a) 2t} U{0}

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types



Interpretation of a type

Using labellings £, types can be interpreted as a set of values.
g g YP P J

() : Types — P(V)
(wordy )z =V,
(twithp)z = {v € (t) | eval(p,v) = true}

(tox)c ={a€eA|L(a) 2t} U{0}

N
0x100c| 1 | | 0x0 | 2 |
0x1000  0x1004 0x100c  0x1010

(node.(0)* with self # 0)~ = {v € {0,0x1000,0x100c} | v # 0}
— {0x1000, 0x100c}
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Putting everything together: well-typed states

Definition (Well-typed states)

Addresses of type t should contain a value in (t):
Lla..a + size(t)] =t = hla..a + size(t)] € (t) ¢

4 NE
m00c|1| |0xo|2|m10|1| | oxo | 22 |

0x1000 0x1004 0x100c 0x1010 ./ 0x1000 0x1004 0x100c 0x1010 X
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Putting everything together: well-typed states

Definition (Well-typed states)

Addresses of type t should contain a value in (t):

Lla..a + size(t)] =t = hla..a + size(t)] € (t) ¢

1 1
ool 11 ool 2] Bl i1 [ool 2]

0x1000 0x1004 0x100c 0x1010 ./ 0x1000 0x1004 0x100c 0x1010 X

Variables of type t should contain a value in ([t :

Pix| =t = o[x] € (t)z

[ p— 0x100c | | |4f | | [p> 0x1010 |
0x100 1 0x0 2
[ p > node.(0)* ] 0x10):)0 c0><1004 0x1002( 0x1010 [ pr— node.(0)* ]
v X
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Outline

© Abstract domains
@ Type-based domain
@ Points-to predicates domain




The type abstract domain

M2y — Types

~rt(I') = {erase_type(s) | s is a well-typed state with variables typed using I'}
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The type abstract domain

M2y — Types

~ri(I') = {erase_type(s) | s is a well-typed state with variables typed using I'}

type data = word with self <= 10; type = datg; type bar = datg;
pH— .(0)*
Vrt q— foo.(0)* =
r— bar.(0)*
P.9 r r P.9 r p q
{Ls 7w ]| [ a2 ][] [s5][3]2]}
0x1000 0x1004 0x1008 0x1000 0x1004 0x1008 0x1000 0x1004 0x1008
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The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables. J

type data = word with self <= 10; type node = struct { node.(0)*; data }

pH— p — node.(0)*
n—n n— word



The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*
n+— word



The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*

m#0 [n»—my] [n»—>word }
[} n=xpv

p— T p — node.(0)*

™70 [n»—)a] [m—)node.(O)*}



The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*
m#0 [n»—my] [n»—>word }
[} n=xpv
40 p— T p — node.(0)*
i n— o n+— node.(0)*
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

T#0 [pl—Mr] [pr—>node.(0)*]

n—mn n— word

() n=*xp X
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

T#0 p— T p — node.(0)*
n—mn n— word
() n=*xp X
T#0 p— T p — node.(0)*
n— ¢ n— node.(0)*
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
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n—n n+— word

(] assume(xp) # 0V
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

a#0 7#0 p— T e p — node.(0)*
B <10 N1 n+— word

U n=xxpv
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A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pr—> node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

a#0 7#0 p— T i e p — node.(0)*
B <10 n—n B n+— word
U n=xxpv
T %
a#0 T#£0 p— T a® ¢ p — node.(0)*
B<10 6§<10 ni— ¢ 8 ) n— node.(0)*
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Pragmatic extensions: exemple for array handling

The type system is easily extendable.

type task = struct {...
P t- Extensions for handling arrays:
type kernel_interface = struct { @ Array types;
(int with self = nb_tasks); o Global parameters (nb_tasks)
task[nb_tasks].(0); @ Variables offsets in pointers
}

Example (Abstract state)

m#0
o < b_tasks + size(task) [p— ] [ p+— task[nb_tasks].(c)x |

Lightweight Shape Analysis based on Physical Types
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Outline

e Experiments on shape benchmark and binary-level microkernel verification
o Existing shape benchmarks (C + binary)

@ Verification of absence of privilege escalation

Lightweight Shape Ana



Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)
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Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)

@ We experimented on:
@ Challenging, existing shape benchmarks
o Verification goal: memory safety and preservation of structural invariants
o Complex data structure manipulations
@ A full industrial embedded microkernel (no access to the source)

o Verification goals: absence of privilege escalation and absence of RTE
o System program relying on low-level structural invariants
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Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)

@ We experimented on:
@ Challenging, existing shape benchmarks
o Verification goal: memory safety and preservation of structural invariants
o Complex data structure manipulations
@ A full industrial embedded microkernel (no access to the source)

o Verification goals: absence of privilege escalation and absence of RTE
o System program relying on low-level structural invariants

@ We evaluated the:

o Performance of the analysis (analysis time)
e Precision of the analysis (number of alarms)
o Ease of setup and automation (number of annotations)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Phys



Evaluation on shape benchmarks

Benchmark Annotations LocC C 00 01 02 03
gen/ed/pre Time/+— /v Time/— /v/ Time/+—/v/ Time/+—> /v/> Time/— //>
psll-bsort [ 25
psll-reverse 10 0 0 1
psll-isort 0 20
gdll-findmin 1 49
gdll-findmax 1 58
gdll-find 25 5 1 78
gdll-index 1 55
gdll-delete 1 107
bsplay-find 1 81
bsplay-delete 22 1 1 95
bsplay-insert 1 101
graph-nodelisttrav 1 12
graph-path 1 19
graph-pathrand 1 25
graph-edgeadd 23 0 1 15
graph-nodeadd 1 15
graph-edgedelete 1 1
graph-edgeiter 1 22
uf-find 1 1
uf-merge 33 3 1 17
uf-make 0 9

Total verified (max. 34) 30 13 30 16 30 21 30 21 30 21




Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
o vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

Kernel

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021
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Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port

Task Task Task
@ 329 functions, ~10,000 instructions
2 versions
N
@ beta: 1 discovered vulnerability =

Kernel rw\‘\

@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021
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Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel ' %D %D
@ Version: ARM quad-core port
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@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
Kernel
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Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel ' ‘ '

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
Kernel
@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021
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Outline

@ Conclusion




Conclusion

Type-based static analysis is:
o Efficient
o Easily automatable, requires only few annotations

@ Relatively precise, can prove memory safety and light structural invariants

Working on binary code nearly as well as on C

A robust basis for a combination with advanced memory analyses
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