Lightweight Shape Analysis

based on Physical Types

Olivier Nicole! 2 M. Lemerrel, X. Rival®

ICEA LIST/Université Paris-Saclay

2CNRS/ENS/INRIA/PSL University

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The need for automated memory analysis

Memory safety errors are the most pervasive and most severe cybersecurity issue today J

“~70% of the vulnerabilities addressed through a security update each year continue to be memory
safety issues”
- M. Miller (Microsoft Security Response Center), Blue Hat 2019

“63% of 2019's exploited 0-day vulnerabilities fall under memory corruption”
- Google’s project zero, "A Year in Review of 0-days Used In-The-Wild in 2019”

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Anal:

The need for automated memory analysis

Memory safety errors are the most pervasive and most severe cybersecurity issue today J

“~70% of the vulnerabilities addressed through a security update each year continue to be memory
safety issues”
- M. Miller (Microsoft Security Response Center), Blue Hat 2019

“63% of 2019's exploited 0-day vulnerabilities fall under memory corruption”
- Google’s project zero, "A Year in Review of 0-days Used In-The-Wild in 2019”

Structural invariants on memory are the backbone of the proof in systems programs J

“Much of the kernel-call code is directed at maintaining [data-structure] invariants”
- Walker et al., Specification and Verification of the UCLA Unix Security Kernel, 1980

“There are four main categories of invariants in our proof: 1. low-level memory invariants, 2.
typing invariants, 3. data structure invariants, and 4. algorithmic invariants. [...] 80% of the effort
[...] went into establishing invariants.”

- Klein et al., Comprehensive Formal Verification of an OS Microkernel, 2015

=» Need for a practical automated memory analysis for low-level languages.

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Families of automated memory analyses

. Automation Proves Proves Low-level
Analysis
. & Easeof = memory structural code
efficiency . . .
setup safety invariants (binary)

Pointer analyses ++ ++ -- - ~
Shape analyses - ~ ++ ++ ~

Our approach: ' N N N N .

Type-based analysis

Our goal

Analysis efficiency + Easy setup + Spatial Memory Safety + Structural Constraints
On C and machine code

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Our approach: type-based abstract interpretation

Our approach

An abstract interpretation that
o simultaneously relies on and establishes type safety

o using a dedicated type system designed for abstract interpretation.

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Our approach: type-based abstract interpretation

Our approach

An abstract interpretation that
o simultaneously relies on and establishes type safety

o using a dedicated type system designed for abstract interpretation.

Existing works on automated type-based static analysis either are:
o Static analyses that assume type safety;

@ Or syntactic and decidable type inference algorithms
that are insufficiently precise for systems code.

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Overview

We start from standard & untyped concrete semantics for machine code... J

3
0x100c| 1 | | 0x0 | 2 ‘
0x1000 0x1004 0x100c 0x1010

p— 0x1000
n— Oxabcd

b n==xp

Overview

We start from standard & untyped concrete semantics for machine code... J

p — 0x1000 ¥
n— Oxabcd 0x100c | 1 | | 0x0 | 2

0x1000 0x1004 0x100c 0x1010

b n==xp
p n

p — 0x1000 F——& ¥
n— 0x100c 0x100c | 1 | | 0x0 | 2

0x1000 0x1004 0x100c 0x1010

J #n=p

Overview

We start from standard & untyped concrete semantics for machine code...)
p
p — 0x1000 ¥
n— Oxabcd 0x100c | 1 | | 0x0 | 2 ‘
0x1000 0x1004 0x100c 0x1010
b n==xp
p n
p — 0x1000 ﬁ ¥
n— 0x100c 0x100c | 1 | | 0x0 | 2 ‘
0x1000 0x1004 0x100c 0x1010
J #n=p
n
p — 0x1000 1P ot ¥
n— 0x100c ‘ 0x100c| 1 | |0x1000| 2 ‘
0x1000 0x1004 0x100c 0x1010

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Overview

We add types to tag the memory and the variables... J
type data = word with self <= 10; type node = struct { node.(0)*; data }
p +— 0x1000 P N2 p+— node.(0)*
n+— Oxabcd oxfooc| 1| o0 | 2 | n+— word
0x1000 0x1004 0x100c 0x1010
J n==xp
p 1 n
p — 0x1000 I—& p — node.(0)*
n+— 0x100c oxfooc| 1| [o0 | 2 | n+— node.(0)*
0x1000 0x1004 0x100c 0x1010 ’
4 xn=p
p
p — 0x1000 rL} %’1 p — node.(0)*
n+— 0x100c oxfooc| 1| oxiboo| 2 | n+— node.(0)*
0x1000 0x1004 0x100c 0x1010)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Overview

Type domain is just type of the variables + invariant that states are well-typed J

type data = word with self <= 10;

0. Nicole, M. Lemerre, X. Rival

type node = struct { node.(0)*; data }

[p — node.(0)*]

n+— word
b n==xp
[p — node.(0)*]
n+— node.(0)*
J #n=p

p — node.(0)*
n+— node.(0)*

Lightweight Shape Analysis based on Physical Types

Overview

The full analysis adds numerical constraints and points-to predicates J
type data = word with self <= 10; type node = struct { node.(0)*; data}
p— T p — node.(0)*
m#£0
n—n n+— word
4 n==xp
" 4e.(0)
p—m « p — node.(0)*
<
m#0 f<10 {nr—>a] B [nn—)node.(O)*]
J #n=p
™ a l
740 B<10 p— T T 0 p — node.(0)*
a#0 6<10 n— o B 0 n+— node.(0)*

O. Nicole, M. Lemerre, X. Rival

Lightweight Shape Analysis based on Physical Types

Outline and contributions

@ Typed concrete semantics
@ Structural invariants expressed by types

© Abstract domains
@ Type-based domain
@ Points-to predicates domain

© Experiments on shape benchmark and binary-level microkernel verification
o Existing shape benchmarks (C + binary)
@ Verification of memory safety + preservation of light structural invariants

@ Verification of absence of privilege escalation
@ Of a full commercial microkernel
@ From its binary executable

@ Conclusion

O. Nicole, M. Lemerre, iva Lightweight Shape Analysis based on Phys

Outline

@ Typed concrete semantics
@ Structural invariants expressed by types

Types 2t = wordy (base type of size k bytes)
| n (named type with type name n € Names)
| tox (possibly null pointer)
| struct{t;t} (record type)
| tls] (array type)
| twithpred (type with a refinement predicate)
Typesg 5t, == t.(0) (type with offset o € N)

Definitions € Names — Types

type data = word, with self < 10;
type node = struct { node.(0)*; data}

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Heaps and labellings

h > Heap = Address — Value
oo + T ool 2]

0x1000 0x1004 0x100c 0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Heaps and labellings

h 5 Heap = Address — Value I_k 1
L > Labellings = Address — Types, oxfboc] 1| [oxo | 2 |
0x1000 0x1004 0x100c 0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..

o Labellings are whole and contiguous:

L[0x1000 — 0x1007] = node <=
L[0x1000] = node.(0) A ... A L][0x1007] = node.(7)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Heaps and labellings

h 5 Heap = Address — Value |_$ 1
L > Labellings = Address — Types, oxfboc] 1| [oxo | 2 |
0x1000 0x1004 0x100c 0x1010

@ Byte-level reasoning:

h[0x1000 — 0x1003] = 0x100c <>
h[0x1000] = 0x0c A h[0x1001] = OX10 A . ..

o Labellings are whole and contiguous:

L[0x1000 — 0x1007] = node <=
L[0x1000] = node.(0) A ... A L][0x1007] = node.(7)

o This allows safe pointer arithmetics:
Safe Pointer Arithmetics

ep:t(o)x e dvi#0 0<o+i<size(t)
e+i:t.(o+1i)x

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

‘ node*.(0) ‘ node*.(1) ‘ node*.(2) ‘ node*.(3) ‘ data.(0) ‘ data.(1) ‘ data.(2) ‘ data.(3) ‘

‘ node.(0) ‘ node.(1) ‘ node.(2) ‘ node.(3) ‘ node.(4) ‘ node.(5) ‘ node.(6) ‘ node.(7) ‘

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
T T L B B

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physica

The lattice of types with offset, subtyping, aliasing

type node = struct { node.(0)*; data}

node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
T T L B B

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

Theorem: Containment relation <€ Types, x Types is an order relation.

rollary:
Corollary Subtyping

e:t.(0)x t(o) X u.(i)

e:u.(i)*

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The lattice of types with offset, subtyping, aliasing

type data =word, with self < 10;
type node = struct { node.(0)*; data}

//\\

word4.(0) word4.(1) wordy.(wordy.(
node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
L T T P B]

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The lattice of types with offset, subtyping, aliasing

type data =word, with self < 10;
type node = struct { node.(0)*; data}

//\\

word4.(0) word4.(1) wordy.(wordy.(
node*.(0) node*(1) node*.(2) node*.(3) data.(0) data.(1) data.(2) data.(3)
L T T P B]

node.(0) node.(1) node.(2) node.(3) node.(4) node.(5) node.(6) node.(7)

Theorem: The semi-lattice (Typesy, <) is a tree

Corollary: No.Alias
e s t(o)x eg:u.(i)x
et dvi e2 v
t.(o) Zu.(i) u.(i) Zt.(0)
v1 7 v2

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Interpretation of a type

Using labellings £, types can be interpreted as a set of values. J

(-)z : Types — P(V)
(wordy)z =V,
(twithp)z = {v € (t) | eval(p,v) = true}

(tox)c ={a€eA|L(a) 2t} U{0}

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Interpretation of a type

Using labellings £, types can be interpreted as a set of values.
g g YP P J

() : Types — P(V)
(wordy)z =V,
(twithp)z = {v € (t) | eval(p,v) = true}

(tox)c ={a€eA|L(a) 2t} U{0}

N
0x100c| 1 | | 0x0 | 2 |
0x1000 0x1004 0x100c 0x1010

(node.(0)* with self # 0)~ = {v € {0,0x1000,0x100c} | v # 0}
— {0x1000, 0x100c}

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Putting everything together: well-typed states

Definition (Well-typed states)

Addresses of type t should contain a value in (t):
Lla..a + size(t)] =t = hla..a + size(t)] € (t) ¢

4 NE
m00c|1| |0xo|2|m10|1| | oxo | 22 |

0x1000 0x1004 0x100c 0x1010 ./ 0x1000 0x1004 0x100c 0x1010 X

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Putting everything together: well-typed states

Definition (Well-typed states)

Addresses of type t should contain a value in (t):

Lla..a + size(t)] =t = hla..a + size(t)] € (t) ¢

1 1
ool 11 ool 2] Bl i1 [ool 2]

0x1000 0x1004 0x100c 0x1010 ./ 0x1000 0x1004 0x100c 0x1010 X

Variables of type t should contain a value in ([t :

Pix| =t = o[x] € (t)z

[p— 0x100c | | |4f | | [p> 0x1010 |
0x100 1 0x0 2
[p > node.(0)*] 0x10):)0 c0><1004 0x1002(0x1010 [pr— node.(0)*]
v X

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Outline

© Abstract domains
@ Type-based domain
@ Points-to predicates domain

The type abstract domain

M2y — Types

~rt(I') = {erase_type(s) | s is a well-typed state with variables typed using I'}

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physica

The type abstract domain

M2y — Types

~ri(I') = {erase_type(s) | s is a well-typed state with variables typed using I'}

type data = word with self <= 10; type = datg; type bar = datg;
pH— .(0)*
Vrt q— foo.(0)* =
r— bar.(0)*
P.9 r r P.9 r p q
{Ls 7w]| [a2][] [s5][3]2]}
0x1000 0x1004 0x1008 0x1000 0x1004 0x1008 0x1000 0x1004 0x1008

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables. J

type data = word with self <= 10; type node = struct { node.(0)*; data }

pH— p — node.(0)*
n—n n— word

The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*
n+— word

The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*

m#0 [n»—my] [n»—>word }
[} n=xpv

p— T p — node.(0)*

™70 [n»—)a] [m—)node.(O)*}

The base analysis: combination with a numerical domain

Reduced product with numerical constraints attached to program variables.

)

type data = word with self <= 10; type node = struct { node.(0)*; data }
pH— p — node.(0)*
n—n n— word

[} assume(p # 0) v/

pH T p — node.(0)*
m#0 [n»—my] [n»—>word }
[} n=xpv
40 p— T p — node.(0)*
i n— o n+— node.(0)*

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

T#0 [pl—Mr] [pr—>node.(0)*]

n—mn n— word

() n=*xp X

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

T#0 p— T p — node.(0)*
n—mn n— word
() n=*xp X
T#0 p— T p — node.(0)*
n— ¢ n— node.(0)*

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pn—) node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

a#0 7#0 p— T e p — node.(0)*
B <10 N1 n+— word

U n=xxpv

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

A storeless abstraction is often not enough

Add points-to predicates to retain information about the heap J
type data = word with self <= 10; type node = struct { node.(0)*; data}
[pl—)ﬂ] [pr—> node.(O)*]
T#0
n—n n+— word

(] assume(xp) # 0V

a#0 7#0 p— T i e p — node.(0)*
B <10 n—n B n+— word
U n=xxpv
T %
a#0 T#£0 p— T a® ¢ p — node.(0)*
B<10 6§<10 ni— ¢ 8) n— node.(0)*

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Pragmatic extensions: exemple for array handling

The type system is easily extendable.

type task = struct {...
P t- Extensions for handling arrays:
type kernel_interface = struct { @ Array types;
(int with self = nb_tasks); o Global parameters (nb_tasks)
task[nb_tasks].(0); @ Variables offsets in pointers
}

Example (Abstract state)

m#0
o < b_tasks + size(task) [p—] [p+— task[nb_tasks].(c)x |

Lightweight Shape Analysis based on Physical Types

O. Nicole, M. Lemerre, X. Rival

Outline

e Experiments on shape benchmark and binary-level microkernel verification
o Existing shape benchmarks (C + binary)

@ Verification of absence of privilege escalation

Lightweight Shape Ana

Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Anal:

Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)

@ We experimented on:
@ Challenging, existing shape benchmarks
o Verification goal: memory safety and preservation of structural invariants
o Complex data structure manipulations
@ A full industrial embedded microkernel (no access to the source)

o Verification goals: absence of privilege escalation and absence of RTE
o System program relying on low-level structural invariants

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Phys

Experimental setups

o We implemented:
o Abstract domains in the Codex library for abstract interpretation
o Two static analyses:

@ Frama-C/Codex (for C)
@ Binsec/Codex (for machine code)

@ We experimented on:
@ Challenging, existing shape benchmarks
o Verification goal: memory safety and preservation of structural invariants
o Complex data structure manipulations
@ A full industrial embedded microkernel (no access to the source)

o Verification goals: absence of privilege escalation and absence of RTE
o System program relying on low-level structural invariants

@ We evaluated the:

o Performance of the analysis (analysis time)
e Precision of the analysis (number of alarms)
o Ease of setup and automation (number of annotations)

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Phys

Evaluation on shape benchmarks

Benchmark Annotations LocC C 00 01 02 03
gen/ed/pre Time/+— /v Time/— /v/ Time/+—/v/ Time/+—> /v/> Time/— //>
psll-bsort [25
psll-reverse 10 0 0 1
psll-isort 0 20
gdll-findmin 1 49
gdll-findmax 1 58
gdll-find 25 5 1 78
gdll-index 1 55
gdll-delete 1 107
bsplay-find 1 81
bsplay-delete 22 1 1 95
bsplay-insert 1 101
graph-nodelisttrav 1 12
graph-path 1 19
graph-pathrand 1 25
graph-edgeadd 23 0 1 15
graph-nodeadd 1 15
graph-edgedelete 1 1
graph-edgeiter 1 22
uf-find 1 1
uf-merge 33 3 1 17
uf-make 0 9

Total verified (max. 34) 30 13 30 16 30 21 30 21 30 21

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
o vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

Kernel

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
o vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

Kernel

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port

Task Task Task
@ 329 functions, ~10,000 instructions
2 versions
N
@ beta: 1 discovered vulnerability =

Kernel rw\‘\

@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port
Ta sk

@ 329 functions, ~10,000 instructions

2 versions N
@ beta: 1 discovered vulnerabilit i
o y Kernel rw\\{
@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
o vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

Kernel

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel ' %D %D
@ Version: ARM quad-core port

Task Task Task
@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
o vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

Kernel

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel ' %D %D
@ Version: ARM quad-core port

Task Task Task
@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
Kernel
@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Verification of the Asterios embedded real-time kernel

@ Industrial real-time microkernel ' ‘ '

@ Version: ARM quad-core port
E 2 Task Task Task

@ 329 functions, ~10,000 instructions

2 versions

@ beta: 1 discovered vulnerability
Kernel
@ vl : verified APE and ARTE

e Analysis time: 430s
o 58 lines of manual annotations.

[1] No Crash, No Exploit: Automated Verification of Embedded Kernels.
O. Nicole, M. Lemerre, S. Bardin, X. Rival. RTAS 2021

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

Outline

@ Conclusion

Conclusion

Type-based static analysis is:
o Efficient
o Easily automatable, requires only few annotations

@ Relatively precise, can prove memory safety and light structural invariants

Working on binary code nearly as well as on C

A robust basis for a combination with advanced memory analyses

O. Nicole, M. Lemerre, X. Rival Lightweight Shape Analysis based on Physical Types

	Typed concrete semantics
	Structural invariants expressed by types

	Abstract domains
	Type-based domain
	Points-to predicates domain

	Experiments on shape benchmark and binary-level microkernel verification
	Existing shape benchmarks (C + binary)
	Verification of absence of privilege escalation

	Conclusion

