
Trace Partitioning as an Optimization Problem

Charles Babu M1,2[0009−0000−8598−2485], Matthieu
Lemerre1[0000−0002−1081−0467], Sébastien Bardin1[0000−0002−6509−3506], and

Jean-Yves Marion2[0009−0002−8262−3887]

1 Université Paris-Saclay, CEA, List, France
{matthieu.lemerre, sebastien.bardin}@cea.fr

2 University of Lorraine, LORIA, France
{charles-babu.mamidisetti, jean-yves.marion}@loria.fr

Abstract. Imprecision is a very common phenomenon in static analyses
that results in false alarms when used for program verification. Design-
ing automatic techniques to improve static analysis precision is an old
dream, but it is highly non-trivial. In the last two decades, static analysis
gave rise to refinement techniques to improve precision through various
forms of sensitivity. Yet, prior attempts are either specialized to particu-
lar domains or based on syntactic rules and heuristics that are tedious to
design and prone to path explosion. In this paper, we cast the problem
of improving static analysis precision as an optimization problem and
propose a generic search-based method to solve it. We identify the chal-
lenges that one faces when solving this problem (like the large search
space, path explosion, redundant computations, or non-monotonic op-
erations in abstract domains) and provide adequate solutions to each.
Finally, we provide a first implementation of the method, demonstrating
both its feasibility and potential over standard benchmark (our early pro-
totype is able to prove some goals that state-of-the-art software model
checkers cannot), and providing valuable feedback when implementing
this method in a static analyzer.

1 Introduction

Context. Automatic verification techniques examine the source code of a pro-
gram to prove that some properties hold. Because for most classes of properties,
this verification is undecidable, the program behavior is approximated, using
notably the theory of abstract interpretation [20,19]. As a result, automated
verification techniques are in general sound, i.e. the programs proved safe are

2 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

actually safe, but incomplete, i.e., there may be false alarms on safe programs
due to imprecisions.

Problem. False alarms due to imprecision are inherent to any sound tool ver-
ifying undecidable program properties, and it is the main factor hindering the
practical adoption of software verification. Completeness [24,14] represents the
ideal situation where no false alarm is produced, but it rarely occurs in prac-
tice. As a consequence, in the last two decades, automatic techniques marked
the trend toward automating the removal of false alarms, reducing the need
for manual inspection. Model-checking [17] pioneered this trend through the
Counter Example-Guided Abstraction Refinement (CEGAR) principle. In the
static analysis world [20], although the problem of abstraction refinement to im-
prove precision was studied by Giacobazzi et al. [25] from a theoretical point of
view, the approach did not provide any actionable refinement techniques that
could be applied to any program and abstract domains.

Generic refinement techniques to automatically improve precision are highly
desirable, as they can be adapted to a wide range of abstractions. Despite its suc-
cess, CEGAR is not generic and should be manually adapted for each abstract
domain [6,11,30]. In contrast, static analysis gave rise to generic techniques to
improve precision based on various forms of sensitivity frameworks [37], having
in common to introduce disjunctions into abstract states in a structured way.
We will coin any such a framework as semantic-directed [39] if it has a general
strategy to choose which disjunctions to preserve, based on the results of the
analysis. Among various sensitivities, the most general one is trace partition-
ing [42,29,46], which exploits the execution traces of a program to partition its
abstract states and improve precision by effectively delaying control-flow joins.
Some well-known instances of trace partitioning include loop-unrolling, context-
sensitivity, etc. However, implementations of trace partitioning framework are
generally not semantic-directed [39]; instead, they use heuristics which can fail
to separate traces that would improve precision, or introduce useless separa-
tions. The latter is unfortunate, as too many trace splits lead to a combinatorial
explosion in the size of the program. Some automated sensitivity-based semantic-
directed refinement techniques do exist in static analysis, but they are specialized
to some particular application domains [39,40].

Goal.We address the challenge of providing a new automatic refinement frame-
work for static analysis, based on trace partitioning, that is generic and semantic-
directed. Our framework takes as input a program and tries to find a refinement
of it (through delayed joins) with maximum precision in the search space of all
the possible refinements with regards to a given objective, and as minimal as
possible in size.

Challenges. There are several reasons why this goal is challenging, some im-
mediately coming to mind (like path explosion and the size of the search space),
but some that are much less obvious. The first contribution of this work is to
identify the challenges of a search-based strategy to find an optimal refinement
(detailed in Sec. 2, together with our solutions), such as:

Trace Partitioning as an Optimization Problem 3

– The possibly large size of the refined programs, as program disjunctions tend
to multiply, and rapidly increase the number of program paths (path explo-
sion);

– The large size of the (refinement) search space, which is impossible to ex-
haustively explore3. This is because possible precision improvements are not
independent: sometimes several changes must be done simultaneously to ob-
serve a precision improvement; moreover sometimes changing a part of the
program may make a previous change in another part unnecessary;

– The accumulated computation time: fixpoint computation can be an expensive
operation, and doing it repeatedly during the search seems to be prohibitively
expensive;

– The fact that often abstract interpreters have non-monotonic operators (like
widening), meaning that local improvements can actually decrease the overall
precision;

– The problem of characterizing improvement : it is often possible to endlessly
make a program more precise by unrolling it. Which parts of the program are
worth improving, and is it better to improve these parts simultaneously, or
one after the other?

Contributions. To solve the above challenges, we propose the following contri-
butions that allow implementing a search-based method for automated program
refinement and make it more efficient.
– First, the possible program refinements are represented as tuples for which

each dimension represents a choice of a parameter (i.e. split locations) that
can be improved, and where a higher value in this dimension represents a
program which is both larger and more precise. We maintain correspondence
between tuples and the refined program using a homomorphism, and provide
an example describing how control flow can be delayed in Sec. 4 (we implement
and evaluate other possible improvements, like context-sensitivity for differ-
ent call sites or unrolling). We then propose comparing the precision of the
program refinements on specific location of interest. These tuples are the basis
for our ratchet search strategy, which alternates phases that try to improve
the precision with phases that decrease the program size within the same pre-
cision class, and allows pruning the search space by not testing regions that
would decrease precision;

– We implement incremental computation (Sec. 5) to avoid recomputing the
full fixpoint when testing a new program refinement. Computing incremental
program refinement derives from the homomorphism, and we discuss different
optimizations to improve the incremental fixpoint computations;

– We use a modified incremental fixpoint computation as a way to force mono-
tonicity of the refinement process for non-monotonic abstract operators (Sec.
6), i.e. our incremental fixpoint computation is more precise than recomput-
ing the fixpoint from scratch, and guarantees that further refining a program
cannot decrease precision;

3 To illustrate, even with a maximum delay length k = 100 and a total of n = 20
split-points, we could be faced with up to ≥ 10020 refinements.

4 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

– We provide a reference implementation of our search algorithm, and prove
some properties about it (Sec. 7); in particular, given a bound on our search
space, our algorithm guarantees that it can return a maximally precise pro-
gram with minimal size within that bound. We also provide search strategies
to quickly find suitable program refinements: Iterative Deepening Depth-First
Delay Search (IDDDS) and Synchronized Delay Search (SDS), the latter mim-
icking common trace-partitioning heuristics;

– We implement our framework on top of existing abstract domain libraries and
evaluate it in Sec. 8 on 1126 examples from the SVComp benchmark, demon-
strating both its feasibility and its interest, as it performs better than standard
baselines (no trace partitioning, full trace partitioning, SDS-partitioning), ex-
plores only a small fraction of the refinement space while finding complex
refinements of interest (e.g., with refinement depth up to 160) and manages
to prove some properties out of reach of well-optimized state-of-the-art CE-
GAR software model checkers [6,11,30,4];

– Finally, there is a large gap between problematic issues in theory and how well
they work in practice; and we report on the important experimental points
that make our approach practical (Sec. 8.5).

Overall, our method allows us to outperform standard trace partitioning heuris-
tic strategies, especially being able to deal with large delays and to solve some
problems out of reach of the currently best-known refinement approaches. Our
findings and results should help static analyzer developers to integrate search-
based strategies to improve static analysis operations that are cheap and yet
provide the most important precision gains, or to research alternative strategies.
To that end, we provide the code and benchmark used to perform our experi-
ments at https://zenodo.org/records/13308605.

2 Analysis Refinement as an Optimization Problem

2.1 Program / Motivating Example

Consider the program C-flow.c as shown in Fig. 2 with unreachable error.
Initially, y ∈ {1, 2}. Before the error at line 12, y is only modified in the if-branch
with y = 1. Since the guard y >= 3 is never taken, the error is unreachable.

Let us consider analysis using the standard Constant Propagation Cp [36]. For
the rest of the paper, we represent programs using control-flow graphs (CFGs):
the CFG P(0,0,0) shown in Fig. 1 corresponds to C-flow. Additionally, we an-

notate each location with the abstract state (a pair (x♯, y♯), denoting values of
variables (x, y)) obtained by the Cp analysis. The analysis with Cp approximates
y as ⊤ at location 2, given that the possible values for y are {1, 2}. Upon the
propagation of y = ⊤ across the two branches, namely y > 2 and y ≤ 2, the
imprecision along branch y > 2 at location 8 causes the error location 12 to be
(mistakenly) considered reachable in our analysis.

Enhancing precision through program refinement.. Given the initial CFG
graph P(0,0,0) of C-flow, we a priori select split-points 2, 5, and 9 in the CFG

https://zenodo.org/records/13308605

Trace Partitioning as an Optimization Problem 5

0 : (⊤,⊤)

10 : (⊤,⊤)

12 : (⊤,⊤)

(1,⊤)

x = 1

y = 1

x++

y ⩾ 3

y = 1 y = 2

y ≤ 2 y > 2

x = 1

y = 1

x++ skip

int x = 1; y

x++ x++

y ⩾ 3 y ⩾ 3

y > 2

y ≤ 2

y = 1 y = 2

y ≤ 2
y > 2

x = 1

y = 1

x++ skip

int x = 1; y

x++ x++

y ⩾ 3 y ⩾ 3

0 11
10

3

5

2

12

1 : (1,⊤)

2 : (1,⊤)

8: (1,⊤)3: (1,⊤)

5 : (⊤,⊤)

9 : (⊤,⊤)

0

y = 1 y = 2

y ≤ 2 y > 2

x = 1

y = 1

y ⩾ 3

x++ skip

int x = 1; y

x++

y = 1 y = 2

y ≤ 2 y > 2

x = 1
x++ skip

int x = 1; y

y > 2

y ≤ 2

0 : (⊤,⊤)

1 : (1,⊤)

2 : (1,⊤)

8: (1,⊤)3: (1,⊤)

5 : (⊤,⊤)

10 : (⊤, 1)

12 : (2,⊤)

9 : (1,⊤)9 : (⊤, 1)

10 : (2,⊤)

0 : (⊤,⊤)

1 : (1,⊤)

2 : (1, 2)

8: ⊥

5 : (⊤, 1)

10 : (⊤, 1)

9 : (⊤, 1)

2 : (1, 1)

3 : (1, 1)

9 : ⊥

10 : ⊥

12: ⊥

0 : (⊤,⊤)

1 : (1,⊤)

2 : (1, 2)

8: ⊥

5 : (⊤, 1)

10 : (⊤, 1)

9 : (⊤, 1)

2 : (1, 1)

3 : (1, 1)

12: ⊥

P(0,0,0) P(0,0,2)

P(1,0,0) P(1,0,2)

d
e
la
y
0

delay2

delay2

merge2

m
e
r
g
e
0

d
e
la
y
0

merge2

m
e
r
g
e
0

Fig. 1. Graph refinements of C-flow.c, and some possible transformations are:
P(1,0,0)= delay0(P(0,0,0)), P(0,0,2)=delay2(delay2(P(0,0,0))), P(1,0,2)=delay0(P(0,0,2)),
P(0,0,2)= merge0(P(1,0,2)). We represent Constant Propagation (Cp) abstract domain
elements as pairs (x♯, y♯) or else bottom ⊥ at the locations of the CFGs

which are locations with multiple incoming edges. The key idea is to separate
the merged paths to improve precision. P(0,0,0) can be transformed to P(0,0,2)

by delaying the join at 9 by two steps. Intuitively, this split separates the paths
from 9 and merges them at location 12. This signifies that the abstract state
at 9 is now represented by the disjunction of the states at 9 and 9 (delay
leads to location duplication, and we distinguish different duplicates by colors
labels). This disjunction enhances the precision at location 12. We can further
transform P(0,0,2) into P(1,0,2) by delaying the split-point location 2 by one step,
which further improves the precision at 12. The precision now at 12 is sufficient

6 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

to prove that the error is unreachable. We can go further and merge the delayed
split in P(1,0,2), which results in P(1,0,0) with no loss of precision at 12. Instead
of going through intermediate steps, we can also directly delay the split-point
location 2 in the original CFG resulting in the transformed graph P(1,0,0).

1 i n t x = 1 , y ;
2 assume (1 <= y <= 2) ;
3 i f (y <= 2) {
4 i f (∗)
5 x = x + 1 ;
6 y = 1 ;
7 }
8 e l s e
9 x = 1 ;

10 x++;
11 i f (y >= 3)
12 e r r o r () ;

Fig. 2. Example C-flow.c

Takeaways. The key idea provided by this exam-
ple is that refining the program graph may improve
the precision of the analysis, but increases the size of
the program CFG. In this section, we will consider
that refining programs consist of delaying join nodes,
but other kinds of refinement are also possible (e.g.,
loop unrolling or increasing context sensitivity, that
we consider in our evaluation; we show there that
simultaneously combining different kinds of refine-
ments is often required to improve precision). There
are different choices (or dimensions) in program re-
finement that can be made, e.g., choosing which join
node should be split. The dimensions are not orthog-
onal: refining in one direction may make a previous

transformation in another dimension unnecessary. In this case, we can undo this
previous transformation (e.g., merging back the previous split) to decrease the
program size without having the analysis lose precision.

2.2 Program refinement as an optimization problem

A good program refinement is one that maximizes (or sufficiently increases) anal-
ysis precision while having minimal size, like P(1,0,0) in the example. Finding such
a good program refinement, given any static analysis A and original program
P , is our goal in this paper. As the example suggests, this can be viewed as an
optimization problem, where we explore the search space of program refinements
G to find a solution.

One question is what sufficiently precise means. Indeed, delaying a join node
often leads to a small local improvement of precision on an unimportant pro-
gram part. To solve this problem, we define a notion of locations of interest
(£), which are the control locations where we want the analysis precision to
improve (typically, it will be the control location of an unproved assertion or
analysis alarm). Note that improving precision at different locations of interest
may need different program refinements. A question is, when we want to prove
several properties, whether we should try to prove all of them simultaneously
(one analysis with several locations of interest), or sequentially (several analyses
with one location of interest. One lesson learned from our evaluation is that the
latter is better, as often the former leads to path explosion.

2.3 Reducing the search space: from program refinement to tuples

One important problem is that the search space of possible program refine-
ments is very large (and, in general, infinite when there are loops). Furthermore,

Trace Partitioning as an Optimization Problem 7

reasoning about program refinements (e.g. comparing whether a program is a
refinement of another) is algorithmically complicated.

To solve both of these problems, we reduce the search space by considering
program refinements that can be represented using a n-tuple. For instance, in
Fig. 1, we use a triple where each dimension corresponds to the delay of one split-
point. This means that there exists a function H mapping tuples to program
refinements. Furthermore, we will require that H preserves ordering, meaning
that if t1 < t2 (where < is the component-wise ordering between tuples), then
H(t2) is a refinement of H(t1). This makes H a homomorphism Note that this
also implies that the size of H(t1) is smaller than the size of H(t2). For example,
in Fig. 1, P(1,0,2) is a refinement of P(1,0,0) and has larger size, because (1, 0, 0) <
(1, 0, 2).

k

Pinit

Pmax

Pmin

Precision (⊑̂♯

£)

P
ro

g
ra

m
S
iz
e
(<

)

Fig. 3. Optimization Problem

As the set of tuples in Nn is unbounded,
we still need to bound the search space.
For this we use a bound parameter k: i.e.,
we mandate the components of the tuple to
be in the range [0...k] for some bound k,
thus making the search space finite as shown
by the ellipses in Fig. 3, and we also have
H([0...k]n) ⊂ G. Note that if we cannot find
a suitable program refinement given a bound
k, it is possible to increase the bound to in-
crease the search space, starting from the
best refinement we obtained so far (making
the search anytime, as you can always access
the best program refinement when you stop
it).

Note that Pmax = H((k, k, ..., k)) is the
most precise refinement in this search space,
so one may wonder why not just use this pro-
gram refinement. The problem is that it is also the program refinement with the
largest size in the space, and it is often very large due to path explosion, and
often impossible to analyze in a reasonable amount of time and memory, as
demonstrated by our experimental evaluation. This makes searching for a more
precise refinement that limits the size of the programs necessary.

2.4 Ratchet Search: Continuous improvement of precision

Our search strategy should thus try to improve precision while keeping the pro-
gram size as low as possible, which, as we saw, seem to be conflicting goals.
The strategy that we propose for this consists of alternating two phases, one
that explores program refinements to improve precision (in orange in Fig. 3),
followed by one that minimizes the program while preserving the same precision
(in green). We call it the ratchet search strategy because, once a precision im-
provement is found, all the further program refinements that we consider will

8 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

Table 1. Summary of properties across different types. t. Note: † indicates that all
operators of A are monotonic

Types Monotonicity Incrementality

Tuples Nn
≤k t1 < t2 t2 = Succi(t1)

Graphs H([0...k]n) ⊂ G H(t2) is a refinement
of H(t1)

delayi(H(t1)) = H(Succi(t1))

Fixpoints L→ D♯ C(FixA(H(t2)))⊑̂
♯ †

C(FixA(H(t1)))
fix-delayi(H(t1), η1) ⊑

♯

FixA(H(t2))

Concrete
States

L→ P(Σ)
γ̂(C(FixA(H(t2)))) ⊆ †

γ̂(C(FixA(H(t1))))
γ(fix-delayi(H(t1), η1)) ⊆

γ(FixA(H(t2)))

have at least the same precision (we can only move forward in the direction of
precision increase).

The key reason why this strategy works is that the component-wise ordering
< between tuples not only provides information about program size but also
about precision ordering. Specifically, we already saw that if t1 < t2, then we
have that H(t2) is a refinement of H(t1), and hence |H(t1)| ≤ |H(t2)| (the size
of the program corresponding to t2 is larger). For t1, t2 with their corresponding

fixpoint maps η1 : L1 → D♯, η2 : L2 → D♯, we simultaneously have that η2 ⊑̂
♯

£ η1

for any given set of locations of interest £ (that is a set of CFG nodes), where ⊑̂♯

£
represents the fact that the analysis is more precise on the locations of interest

£. Formally, η2 ⊑̂
♯

£ η1
def
= ∀l ∈ £ : C(η2)(l)⊑̂

♯
C(η1)(l).

The left column in Table 1 explains why: ifH(t2) is a refinement ofH(t1), and
assuming that all the analysis operators of A are monotonic (which is often the
case except for the widening operator, see Sec. 6), then the result of computing
a fixpoint on H(t2) is at least as precise than computing it on H(t1). Here,
C(η(·)) represents a projection of η on the locations of the original program to
allow for comparison. Given that γ is also monotonic, this also translates to a
(non-measurable) precision improvement in the concrete.

We can consider that the precision order ⊑̂♯

£ allows to quotient the tuple

space using the ”equal precision on £” predicate =♯
£, that derives from ⊑̂♯

£.
Exploration consists of finding a strictly more precise equivalence class, while
minimization consists of finding a minimal tuple within the same equivalence
class (note that there may be several incomparable minimal tuples). Note that
when the set £ of locations of interests is larger, then the equivalence classes of
precision for =♯

£ shrinks, i.e., the minimal programs for a given level of precision
are larger. This explains why it is better to focus the refinement on a small set
of £ at a time.

Our experiments show that minimization is rarely triggered in practice (sit-
uations like the motivating example are quite rare in practice). However, the
strategy where we try to keep the graph as small as possible is very important;

Trace Partitioning as an Optimization Problem 9

in particular, it is very important to rollback on a smaller tuple when we explore
increasing a dimension of the tuple that does not lead to an increase in preci-
sion, otherwise, the explored refinements suffer from a too large size due to path
explosion.

2.5 The GSR algorithm

This ratchet search strategy readily translates into a search algorithm, that we
call the Generic and Semantic-Directed Refinement algorithm (GSR for short),
given in Algorithm 1.

Algorithm 1: Given initial program P , analysis A, bound k, and £
a set of locations, GSR returns a tuple tb with fixpoint map ηb that
is at least as precise as the analysis on maximum trace-partitioning
in Nn

≤k. The code in gray is activated later to do incremental fixpoint
computation

1 Procedure GSR(P,A, k,£)

2 tb ← (0, ..., 0), ηb ← FixA(P), Ω ← ∅
3 tc ← tb, ηc ← ηb
4 while (1) do
5 //old tc ← tc, old ηc ← ηc
6 tc ← Next(tb, k,Ω)
7 if (tc == None) then break
8 ηc ← FixA(HP (tc)) //ηc ← Fixpoint Inc(old tc, old ηc, tb, ηb, tc)

9 if ηc <̂
♯
£ ηb then

10 tb, ηb ← MinimizeA(tc, ηc)
11 else
12 Ω ← Ω ∪ PruneRegions(tc, tb,Ω)

13 return tb, ηb

The algorithm maintains a current best refinement tb and its correspond-
ing fixpoint map ηb. Then, it uses the Next function to try to find a program
refinement that improves on precision (this corresponds to the precision im-
provement phase in orange in Fig. 3). When it finds one, it tries to find a smaller
tuple that maintains the same precision using the Minimize function (this corre-
sponds to the minimization phase in green in Fig. 3). Another component is the
PruneRegions part (corresponding to the red area in Fig. 3): indeed sometimes
we can learn that refining some dimensions is useless and save this information
for later search. We did not experiment on finding a good pruning strategy so we
do not expand further on it (we leave this direction of research open for future
work).

The implementation of Minimize is quite simple: starting from a tuple tc,
we test all the immediate predecessors of tc, and stop if we cannot find any that
maintains the same precision, or repeat from this predecessor if one is found.

10 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

This guarantees finding a minimal element in the precision equivalence class.
This is a very nice property to perform efficient minimization. As a result, the
worst-case minimization complexity is O(k ·n) where n is the number of locations
(≈ size of the program), and the minimum complexity is just O(n). Incremental
computation (see subsection Sec. 5) allows doing this very efficiently.

2.6 Tuple exploration strategy

A very important element is the choice for the Next function, i.e., the ordering
strategy in which we explore tuples. The main problem here is that the search
space remains very large: there are kn n-tuples when we use a bound k and n is
the program size.

However, if we restrict the search space to consider only tuples with a single
dimension (an index of the tuple) improved, then the search space is much smaller
(its size is n× k). Thus, a realizable strategy is to find dimensions that improve
precision one at a time, as we did in the motivating example of Fig. 1. This
is what our Iterative Deepening Depth-first Delay Search (IDDDS) algorithm
does initially. To find the next suitable dimension, it uses an iterative deepening
[38] strategy, consisting of exploring improving a dimension using a depth limit
that is increased when no improvement is found. Our experiments show that
this strategy works very well in practice, allowing us to quickly find precision
improvements to the analysis, even with large values of k and n (this allows
us to set k to a large value and not worry about this customization parameter,
and also to try every split-point instead of having to manually select a subset of
suitable split-points).

Unfortunately, this strategy is not complete, meaning that there are preci-
sion improvements that can only be found if you simultaneously improve on
several dimensions, that the above strategy will miss. We found that, for in-
stance, some SV-COMP [10] instances could only be improved when three splits
are simultaneously performed. This is why, after IDDDS has completely explored
all the possibilities for 1-dimension improvement, it tries all combinations of 2-
dimension improvement (the search space for 2-dimension improvements is of size
n× (n−1)×k if we increase both dimensions simultaneously). It then continues
with combinations of 3-dimensions, etc. Unfortunately, our experimental section
shows that exploring these combinations times out without finding any improve-
ment in precision. An interesting research direction would consist of finding a
good strategy to find which combination of dimensions is worth trying.

As a comparison, we also tried the SDS strategy which uniformly increases all
tuple components from (0, ..., 0), (1, ..., 1), and finally to (k, k, k). This resembles
common heuristics that apply a fixed delay to every split point [44], or uniformly
apply a fixed level of context-sensitivity [49]. This strategy has the benefit of a
very small search space (of only k) and works moderately well, but eventually
suffers from program size explosion issues, as shown in our experiments.

Trace Partitioning as an Optimization Problem 11

2.7 Incremental Computation

While dealing with the large search space is important, the time required by
each fixpoint computation is another important aspect. We already said that we
want to minimize the graph size to avoid program size explosion issues. Another
aspect is dealing with redundant computation stemming from the analysis of
different variants of the same program.

Our search strategy is based on local improvements (updating tuples by
incrementing one dimension at a time). Following this we want to locally update
the program graph and its corresponding fixpoint map.

For a successor function Succi : Nn → Nn that takes a tuple t1 and outputs
t2 = Succi(t1) by incrementing ith component by 1, we have a correspond-
ing delayi : G → G function (where G = {H(t)|t ∈ Nn}) that applies the
transformation of one-step delay on the paths corresponding to split-point i on
the graphs. As shown in Table 1, the homomorphism H preserves the struc-
ture of the Succi function: delayi(H(t)) = H(Succi(t)). Similarly, we define
mergei : G → G functions that undo the one-step delay and are such that
mergei(H(t)) = H(Succ−1

i (t)).
The fact that graph and tuple updates correspond through homomorphism

allows to map any transformation on the tuples (which can be decomposed as a
succession of calls to Succi and Succ−1

i) to a corresponding transformation on
the graph, and is the basis for our incremental computation: the refinements are
always modified in-place instead of being recomputed. For instance, to compute
the graph P(3,1,2) = H(3, 1, 2) starting from the graph for P(2,1,4) = H(2, 1, 4),
we can use the property P (3, 1, 2) = delay0(merge2(merge2(P(2,1,4))))

Furthermore, for each delayi and mergei operations on the graph, we im-
plement a corresponding fix-delayi and fix-mergei on fixpoint maps that per-
form incremental fixpoint computations. For a tuple t1 with an existing fix-
point map η1, the fixpoint map for tuple t2 can be efficiently computed using
fix-delayi(t1, η1). It only computes fixpoints for the parts of the graph H(t2)
affected by the delayi transformation, while reusing previous results of η1 for the
unaffected parts of H(t2). In experiments, we demonstrate that thanks to this
incrementality, we can test several thousands of refinements in a few seconds.

All this is done by the Fixpoint Inc function (commented out in the defi-
nition of the GSR algorithm). Notice that this function takes both the previous
candidate fixpoint map old ηc and the previous best fixpoint map ηb: depend-
ing on the tuple, it may be better to start the incremental fixpoint computation
from one to the other (i.e., starting over from ηb is a kind of a non-chronological
backtracking [50]).

Another important advantage of incremental fixpoint computation is that it
allows dealing with non-monotonic abstract operators (in particular, widening
is never monotonic [19]). Indeed, we saw that our GSR algorithm relies on the
fact that tuple ordering is an approximation of precision ordering as shown in
the column 3 of Table 1, which is not true when the abstract operators are not
monotonic. Luckily, we can solve this problem by incremental computation, i.e.
we can ensure that for any tuple t and any refinement Succi(t), the fixpoint

12 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

map corresponding to Succi(t) will be at least as precise as the fixpoint map η
corresponding to t, i.e.: fix-delayi(H(t), η) ⊑♯ FixA(H(t). (see Sec. 5). This is
achieved simply by intersecting the newly computed fixpoint map for Succi(t)
with the one we had for t, η.

3 Background

3.1 Notations

The set of natural numbers (containing 0) is denoted by N with the usual ordering
≤. The partial order ⪯ on Nn, the set of n-tuples of natural numbers, is given
by its component-wise extension: for any t, u ∈ Nn, we say t ⪯ u if and only if
t[i] ≤ u[i] for each index i ∈ {1, . . . , n}. If t ⪯ u and t ̸= u, we write t ≺ u. For a
given k ∈ N, we denote by Nn

≤k the set {t ∈ Nn | ∀i ∈ {1, . . . , n} : t[i] ≤ k}, that
is, all n-tuples in Nn such that each component is less than or equal to k. The
powerset of a set S is denoted by P(S), and the finite powerset of S consisting
of all finite subsets of S is denoted by Pfin(S). Lastly, we define N as the set
N ∪ {−∞} and extend the ordering ≤ to include −∞ such that for every i ∈ N,
−∞ < i.

3.2 Program Model

We consider a program to be given by a control flow graph (CFG) P = (L,E, l0),
which is a 3-tuple containing a set L of control locations, a set E of constraint-
labeled directed edges, and an initial location l0 ∈ L. We denote the set of all
program CFGs as P. A path π is a finite sequence of edges (l1, e1, l2), (l2, e2, l3),
..., (lk−1, ek−1, lk), and we use the notation l1 ⇝ lk to denote the path from l1 to
lk. We use helper function Loc(π) = {l1, ..., lk} for set of locations of the path.

We can use Bourdoncle’s algorithm [13] to decompose a CFG into nested
strongly connected components (SCC) or loops, producing a weak topological
ordering (WTO). For the sake of simplicity, we assume that CFG is reducible
[2]. This implies that every SCC has a single entry location called the loop-head.
We define the set of all loop-heads as Llh. For any loop-head llh ∈ Llh, the
locations within the loop are denoted by the set SCC(llh). A location l ̸∈ Llh is
a join-point if it has in-degree ≥ 2. The set of join-points is represented by L⊔.

The set of program states is denoted as Σ. The edge constraints are inter-
preted by the concrete denotational semantics [[·]] : E → Σ ⇀ Σ as partial
functions over program states.

3.3 Abstract Interpretation

An abstract interpreter [19] is a 6-tuple A = (D♯, d0, [[.]]
♯,⊑♯,⊔,∇) consisting

of an abstract domain D♯, or abstract states that form a semi-lattice under the
partial order ⊑♯⊂ D♯ ×D♯ with a bottom ⊥ ∈ D♯ (least element under ⊑♯) and
the upper bound (join) ⊔ : D♯ × D♯ → D♯. The state d0 ∈ D♯ is the initial

Trace Partitioning as an Optimization Problem 13

abstract state, and the abstract semantics [[·]]♯ : E → D♯ → D♯ interprets edge
constraints as monotone functions over D♯. The widening ∇ : D♯ × D♯ → D♯

is an upper bound operator such that d1 ⊔ d2 ⊑♯ d1∇d2 for all d1, d2 ∈ D♯,
and repeated applications of ∇ on an increasing sequence of abstract elements
converges to a fixed point in a finite number of iterations.

A concretization function γ : D♯ → P(Σ) gives the semantics of abstract
domain elements. We require A to be sound, meaning that

∀e ∈ E, d ∈ D♯ : [[e]](γ(d)) ⊆ γ([[e]]♯(d)) (1)

∀d1, d2 ∈ D♯ : γ(d1) ⊆ γ(d1 ⊔ d2) ∧ γ(d2) ⊆ γ(d1 ⊔ d2) (2)

∀d1, d2 ∈ D♯ : d1 ⊑♯ d2 =⇒ γ(d1) ⊆ γ(d2) (3)

If A satisfies the above equations, we can define a function computing a sound
over-approximation of the reachable states of an input program P = (L,E, l0)
using the function FixA. The result η = FixA(P) is in L → D♯ can be computed
as a transitive closure of the abstract semantics of edge constraints over a control
flow graph. We call a result η : L → D♯ a fixpoint-map if ∀l ∈ L : γ(η(l))
includes all the reachable states at location l in P . It is well-known that FixA
indeed computes a fixpoint map. Note that a fixpoint map is an invariant but not
necessarily an inductive invariant. Indeed our incremental fixpoint computation
(Sec. 5) may produce non-inductive invariants.

Finite powerset extension. The finite powerset extension [1,46] of an abstract

domain D♯ is denoted as D̂♯ def
= Pfin(D

♯) with the ordering ⊑̂♯
, also known as

the Hoare powerset extension ordering. For d̂1, d̂2 ∈ D̂♯, we have d̂1⊑̂
♯
d̂2 iff

(∀d1 ∈ d̂1.∃d2 ∈ d̂2. d1 ⊑♯ d2). The ordering ⊑̂♯
on D̂♯ can be lifted point-wise

to compare maps L → D̂♯.
The concretization function γ̂ for D̂♯ is defined as γ̂(S) =

⋃
s∈S γ(d)) for

every S ∈ D̂♯.

3.4 Graph Refinement Notion

We now define the notion of refinement of a graph as illustrated in [44,46].

Definition 1 (Refinement). Given graphs P = (L,E, l0) and Pr = (Lr, Er, l0r)
over the same set of constraints, Pr is a refinement of program P iff there exists
a map τ : Lr → L such that:

1. τ(l0r) = l0
2. No missing behavior in Pr: Consider locations l, lr such that τ(lr) = l. For

all (l, c, l′) ∈ E, there exists (lr, c, l
′
r) ∈ Er such that τ(l′r) = l′; and,

3. No spurious behavior in Pr: Consider locations l and lr such that τ(lr) = l.
For all (lr, c, l

′
r) ∈ Er, there exists (l, c, l′) ∈ E such that τ(l′r) = l′.

Condition (1) requires the initial location correspondence. Condition (2) en-
sures that Pr simulates every edge of P , and condition (3) ensures that no
spurious edge is added in Pr when compared to P . Hence, for a refinement Pr

of P , P and Pr are bisimilar.

14 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

Definition 2 (Collapsing). Consider a refinement Pr = (Lr, Er, l0r) of P =
(L, e, l0) with map τ : Lr → L and a fixpoint map ηr : Lr → D♯. The collapse of

ηr is a map C(ηr) : L → D̂♯ on P such that ∀l ∈ L.C(ηr)(l)
def
= {ηr(lr) | τ(lr) =

l, lr ∈ Lr}.

To compare the precision of any two refinements, we first use the collapsing
operator to compute for every location l in P , the set of domain objects at
duplicated locations corresponding to l in refinements H(ti) and H(tj). Then for

every l ∈ £, we compare their sets using Hoare powerset extension ordering ⊑̂♯
.

4 Tuples to Refinements: a Homomorphism

This section introduces techniques to manage the large search space. We formal-
ize the notion of tuples to quotient the search space and define a homomorphism
that maps each tuple to a graph refinement.

4.1 Tuples

Let Lsp be a set of n split-points, selected a priori based on the edges of the
CFG P = (L,E, l0), and satisfying Lsp ⊆ L⊔ ∪ Llh where L⊔ and Llh are
disjoint sets. Each split-point in Lsp is associated with an index from the set
{0, . . . , n− 1}. Corresponding to each index i, the n-tuple t ∈ Nn defines t[i] as
the bound associated with the split-point at index i. In the following, we discuss
homomorphism from n-tuples Nn to graph refinements. We use helper function
sp(i) to denote the split-point associated with i. We also use the helper function
in-degree(l) to denote the number of incoming edges of l in P .

4.2 Graph coloring for graph transformations

In the following we define two sets of colors along with order relations for two
graph transformations on the CFGs: 1) separation of join paths; 2) loop un-
rollings. These colors are used to distinguish different duplicated locations of
the original program.

1 2 3 ... m

⊤

Colors for join-splitting (CS). Consider a semi-lattice of m+
1 colors CS = {1, . . . ,m,⊤} with an order relation ≺S defined

such that ≺S
def
= {(i,⊤)|i ∈ {1, ...,m}} for all i ∈ {1, . . . ,m}.

For two colors c, c′ ∈ CS , we have c = c′ iff they are the same
element. This set is used to manage colors associated with join-
points in the CFG.

Colors for loop unrollings (CL). We consider another set

of m + 2 colors CL = {1, 2, . . . ,m,∞,⊤} with a relation ≺L
def
= {(i, i + 1)|i ∈

CL−{∞}}∪{(m,∞), (∞,⊤)}. The colors 1, ...,m are used for coloring unrolled
locations of the loop to track iterations effectively. Color ∞ is associated with
the final loop locations, and ⊤ is for the locations outside of the loop.

Trace Partitioning as an Optimization Problem 15

a

b

c

g

e

a

f

a

d

c

b

c

f
f

f f

gg

b

c c

e e e
d

d

h
h

h

Fig. 4. a); Example initial refinement R(0,0) with tuple size 2 for split-points c and f .
b) Delay of join of split-point c by one-step: R(1,0); c) Delay of c by three steps: R(3,0)

The set of color words Cn of length n is defined as follows:

Cn = {w | ∀i ∈ {0, . . . , n− 1} : (sp(i) ∈ L⊔ =⇒ w[i] ∈ CS ∨
sp(i) ∈ Llh =⇒ w[i] ∈ CL)}

In the following, we discuss the role of graph coloring in performing and
reversing graph transformations.

4.3 Separating Join paths

We now discuss a distance notion to separate paths and then adapt graph col-
oring to distinguish duplicated locations.

Given the original CFG P = (L,E, l0), we define a binary relation ≪ on
location set L, derived from edges E in P . For locations l, l′ ∈ L, we have
l ≪ l′ if there exists an edge (l, e, l′) ∈ E and l, l′ ̸∈ Llh, that are not loop-
heads (see background definition). We extend ≪ recursively to represent paths

of increasing lengths: ≪1def=≪, and for each d ∈ N, ≪d+1def=≪d ◦ ≪, where ◦
denotes relational composition. The restriction on ≪ for loop-heads ensure that
in every considered path π : (l1, e1, l2), . . . , (lp−1, ep−1, lp), the locations l1, . . . , lp
are not loop-heads.

Remark 1. While we handle loops through unrolling (Sec. 4.4), we simplify the
presentation of homomorphism and do not handle the separation of paths beyond
loops. We constrain ≪ by not considering loop-heads. A straightforward solution
to this is that any one-step separation beyond a loop-head should duplicate the
entire loop corresponding and merged before the start of the loop exit-path to
preserve homomorphism. In the example shown in Fig. 4c, the separation stops
at the loop-head and the loop is not duplicated.

16 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

a

b c

d

a1

b1

d1

a2

b2

d2

a∞

b∞

d∞

c⊤

Loop
body

Loop
body

Loop
body

Loop
body

Fig. 5. a) Refinement S(0) with split-point a b) Refinement S(2) after delaying (un-
rolling) the loop by two steps

The function dmax : L×L → N represents the maximum path length between

two locations, given by dmax(l, l
′) =

0 if l = l′

max{d ∈ N|l ≪d l′} if such a d exists

−∞ otherwise

.

Example. Consider the CFG R(0,0) as shown in Fig. 4. Here, dmax(a, f) = 4,
dmax(a, h) = −∞, dmax(h, g) = 2, and dmax(d, g) = −∞.

Graph Coloring to separate paths. Consider a join-point l⊔ associated with
index i and has an in-degree m. Consider color set CS = {1, ...,m,⊤} of m + 1
colors. Every location in a refinement is a pair (l, w) such that w is a color word
and ∈ Cn, and w[i] denotes the color associated with a split-point. For join-points,
we illustrate using color symbols instead of CS by mapping 1 → , 2 → ,⊤ →
for m = 2. Since each join-point may have different in-degree in the original
program, the maximum colors needed for each such join-point may vary.

For any location (l, w) in a refinement, the colors or for w[i] indicate that
separating of paths from join-point l⊔ at index i led to the creation of (l, w). In
contrast, the color w[i] = is given when join-point does not participate in the
creation of (l, w).

Example. Consider the example CFG shown in Fig. 1, where the initial refine-
ment has every location labeled with colors . Consider three chosen join-points
2, 5, and 9, located at indices 0, 1, and 2 in the tuples respectively. From the
initial refinement P(0,0,0), delaying join-point at index 0 by one step results in

duplicating location 2 into 2 and 2 , leading to refinement P(1,0,0). Similarly,

delaying join-point at index 2 by two steps duplicates the location 9 into 9
and 9 and location 10 into 10 and 10 .

4.4 Unrolling loops

For a loop-head llh ∈ Llh, we consider the demanded unrolling [54] of loop for
llh and adapt graph coloring using color set CL = {1, ...,m,∞,⊤} for locations

Trace Partitioning as an Optimization Problem 17

to be able to perform/undo an unrolling. For llh with an unrolling length m, any
jth unrolling creates new locations such that every location is associated with
a color word w such that w[i] = j. The final loop locations and the locations
outside of unrolling have the default color w[i] = ∞. Note that, by definition of
≪i, join-points inside loops are partitioned only until they reach some llh ∈ Llh.
For all loop-heads, we use a fixed maximum number of colors which is exactly the
maximum unrolling length used. In the next section, we show how ≺L relation
by construction allows for unrolling shown in Fig. 5. Any nested loops within
the loop are duplicated during the unrolling process.

To reverse an unrolling, all locations corresponding to the most recent un-
rolled color m are removed, and edges that connected locations with color m−1
to those with color m are redirected to the loop-head.

Example. Consider the example show in Fig. 5 with one split-point associated
with loop-head. The color words of size 1 is shown in the superscript of each
location, and the loop is unrolled twice. All locations created with the new
unroll is given the same numeric color, which is the new unroll depth. The final
loop locations have the default color ∞.

4.5 From Tuples to Graph Refinements: A Homomorphism

Given program P = (L,E, l0) and n split-points, we introduce a coloring function
Col : Nn → (L × P(Cn)), associating each n-tuple t ∈ Nn with a function that
maps locations in L to subsets of Cn.

Through this, we know how each location of the original program is parti-
tioned into multiple locations in refinement and each labeled with a color word
w ∈ Cn. To define Col(t, l) where t ∈ Nn and l ∈ L, we use intermediate relations
zpath, comp, split, unroll which are given by:

zpath(l′, l) ⇐⇒ ∃π : l1 ⇝ l : l′ ̸∈ Loc(π) ∧ dmax(l
′, l1) = −∞

split(t, l, w, i) ⇐⇒ l′ = sp(i) ∧ l′ ∈ L⊔ ∧m = in-degree(l′) ∧
d = dmax(l

′, l) ∧ (d ≥ t[i] ∨ d = −∞ =⇒ w[i] = ⊤) ∧
(0 ≤ d < t[i] =⇒ (w[i] ∈ CS ∧ (¬zpath(l′, l) ⇒ w[i] ̸= ⊤)))

unroll(t, l, w, i) ⇐⇒ l′ = sp(i) ∧ l′ ∈ Llh ∧ m = t[i] ∧
((l ̸∈ SCC(l′) ∨m = 0) =⇒ w[i] = ⊤)∧
(l ∈ SCC(l′) ∧m > 0 =⇒ w[i] ∈ CL − {⊤})

(4)

We now define Col(t, l) as follows:

Col(t, l)
def
=

{
w ∈ Cn

∣∣ ∀i ∈ {0, ..., n− 1} : split(t, l, w, i) ∨ unroll(t, l, w, i)}
(5)

Example. Consider R(0,0) with split-points c, f ∈ L⊔ as shown in Fig. 4, where
only c is delayed as shown by colored edges.

18 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

– zpath: Consider R(3,0) in Fig. 4c. When a location l is duplicated as (l, w) by
delaying split-point i, the constraint zpath says when w satisfies w[i] ̸= . For

instance when delaying split-point c, both c and e are duplicated as c , c ,
e , and e . However, we do not create locations c , e . In contrast, for
location f , the delay of c not only creates f , f , but also f with w[0] = .

The reason is that f is essential for all the paths not interfered during the
delay of c.

– split(t, l, w, i): Consider the delay of c with distance t[0] = 3 as shown in
R(3,0). Here, location e has dmax(c, e) = 2, and since 0 ≤ dmax(c, e) < 3.
location e will be duplicated with words , . Since the only incoming edge
of e is along the delay path, zpath ensures that e cannot have a duplicated
location with the word . For location d, the delay of c is blocked since d is
a loop-head as shown in the figure.

Homomorphism. Given program P = (L,E, l0) and a set of all program CFGs
P, we define homomorphism HCol

P : Nn → P that maps each tuple t ∈ Nn to
a graph that complies with the constraints of the tuple and the color labeling.
When P and Col are clear from the context, we use H instead of HCol

P .

A graph Pr = HCol
P (t) composed of Pr : (Lr, Er, l0r) is defined as follows:

1. The set of locations Lr = {(l,w) | l ∈ L,w ∈ Col(t, l)}
2. The set of edges Er is such that ((l1,w1), e, (l2,w2)) ∈ Er if and only if

(l1, e, l2) ∈ E and one of the following hold for every i

(a) sp(i) ∈ L⊔ ∧ (w1[i] ⪯S w2[i] ∨ (w2[i] ≺S w1[i] =⇒ l2 = sp(i)))

(b) sp(i) ∈ Llh and one of the following holds

i. l2 = sp(i)∧((w1[i] = ⊤∧w2[i] = 1)∨w1[i] ≺L w2[i]∨w1[i] = w2[i] =
∞)

ii. l2 ̸= sp(i) ∧ (w1[i] = w2[i] ∨ w2[i] = ⊤)

3. The initial location l0r = (l0,w) such that l0 ∈ L and w ∈ Cn with all entries
set to ⊤ ∈ CS for join-points indices and to ⊤ ∈ CL for loop-head indices.

4. Finally, τ map is defined as follows: τ(l, w) = l

5 Incremental Computation

In this section, we formalize how to perform one-step refinement through incre-
mental computation. We first motivate incremental graph transformations and
then discuss how to efficiently do incremental fixpoint computation on the trans-
formed graph. Both these methods help make the one-step refinement process
efficient thus making the search over a large search space feasible.

Consider the set of n-tuples Nn and its n successor functions Succ0, ..., Succn−1

on tuples. We define a one-step relation R as follows: for tuples t1, t2 ∈ Nn, t1Rt2
if and only if there exists an i such that the t2 = Succi(t1). The ordering ≤ on
tuples in Nn is defined as the reflexive and transitive closure of R.

Trace Partitioning as an Optimization Problem 19

5.1 Incremental Graph Refinement

Consider a left-total relation R between tuples in the graph. If R is a function
H (i.e. associate a single graph to every tuple), then we can define for each
successor function Succi a corresponding function delayi defined as: ∀t,∀i :
delayi(H(t)) ≜ H(Succi(t)). We can also define merge functions defined as:
∀t, ∀i : t[i] > 0 ⇒ mergei(H(t)) ≜ H(Succ−1

i (t)). These definitions imply that H
is a homomorphism that preserves the tuple structure. This implies in particular
that ∀i : mergei◦delayi = Id (we can undo graph refinements), or that the delay
functions are commutative: ∀i, j : delayi ◦ delayj = delayj ◦ delayi (meaning
that the graph obtained by applying several refinements does not depend on the
order in which these refinements are applied).

When applied to the homomorphism H defined in Sec. 4.5, we obtain the
delayi implementation given in the Appendix. There we have the additional
property that ∀t : delayi(H(t)) is a refinement of H(t); as a corollary we have
that H is monotonic (i.e. t1 < t2 implies that H(t2) is a refinement of H(t1). All
the proofs can be found in the Appendix.

5.2 Incremental Fixpoint Computation

We can incrementally refine graphs using the delayi and mergei functions, but
we also need to do the same to incrementally compute fixpoint maps. For this,
we utilize the fix-delayi and fix-mergei functions. Consider tuples t and t′

such that t′ = Succi(t) for some i. If we have a fixpoint map η corresponding
to t, then fix-delayi(H(t), η) returns a fixpoint map η′ for t′, without hav-
ing to recompute one from scratch as FixA(H(t′)). Our method employs the
incremental fixpoint computation techniques of Stein et al. [54], recomputing
only the parts of the graph H(Succi(t)) that are affected by the transformation,
while reusing the results of η for the rest. When the analysis operations are
monotonic, we maintain the fixpoint-consistency property, which ensures that
fix-delayi(H(t), η) = FixA(H(Succi(t))) (when the operators are not mono-
tonic, we ensure that fix-delayi(H(t), η) ⊑♯ FixA(H(Succi(t))); this is dis-
cussed in Sec. 6). Stein et al. [54] ensures fixpoint consistency by eagerly remov-
ing all the abstract states at locations that (transitively) depend on the affected
location l, and subsequently recomputes them lazily.

We use a slight variant of Stein et al. [54] to specifically optimize fix-delayi
for GSR without eagerly deleting abstract states at all locations from a point
of transformation l. Often happens that even if a location l′ is reachable from
l, the abstract state at l′ does not change (e.g. when a variable was made more
precise but is later deallocated). So, we instead lazily remove abstract states at
the successors of location l′ only if the new abstract state d′ at l′ differs from the
old abstract state d. The fixpoint iteration uses the classical worklist algorithm
[41] to incrementally compute abstract states. Due to the presence of cycles in
CFG, we use Bourdoncle’s algorithm [13] to identify widening points and apply
widening to enforce convergence.

20 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

Algorithm 2: Fixpoint Inc(tc, ηc, tb, ηb, t
′
c)

Input: tb, tc such that tb < tc, fixpoint maps ηb, ηc
1 if tc < t′c then
2 t, η ← tc, ηc;
3 else
4 t, η ← tb, ηb;
5 diffu ← t′c − t;

6 return ⃝
0≤u≤n

fix-delaydiffui (η);

We now discuss the implementation of the Fixpoint Inc function, which
computes a new fixpoint map from existing ones. An important point here is
that we only want to apply the fix-delayi operation, not the fix-mergei one
because only fix-delayi can force the monotonicity of operators. Thus, we want
the difference diffu between the target tuple t′c and the starting tuple to only
contain positive components. Thus, we test if the previous candidate tc was
smaller than the new one t′c; if not, we start over the fixpoint computation from
the existing best candidate tb. If tc < t′c, we have tb < tc < t′c, i.e. there are
fewer computations to make if we can start from tc. For example, if we have tc =
(2, 1, 4) and t′c = (3, 1, 2) and tb = (1, 1, 1). We don’t have tc < t′c , so we need to
start from tb. In the end we return fix-delay0 ◦ fix-delay0 ◦ fix-delay2(ηb).

To preserve fixpoint-consistency with transformations inside loops, we need
to erase and recompute the fixpoint for every location in the loop to compute
the precise fixpoint (bottom-up) instead of top-down refining from an imprecise
fixpoint [19]. To avoid doing too many fixpoint computations for loops for every
fix-delayi step, we recompute the fixpoint for the locations in the loop only
once, when all the delays have been done at the end of each deepening bound in
IDDDS.

6 Non-Monotonic Operators

Typical implementations of the abstract operators in practice resort to using
sound but non-monotonic operators. In particular, as widening extrapolates the
growth of abstract element, it cannot be monotonic, as a more precise argument
can result in a new growth to extrapolate. For instance, a typical widening over
intervals [19] computes both [1, 40]∇[1, 40] = [1, 40] and [1, 1]∇[1, 40] = [1,+∞],
which is not monotonic. In the presence of such operators, we no longer have
the property that t1 < t2 implies that the fixpoint results of t2 is at least as
precise as t1 (see Table 1). Consider the example in Figure 6. Initially, interval
analysis after the join at line 2 would compute the value of x as [1, 60]. After
the assumption x ≤ 40, this interval becomes [1, 40], and within the loop, it
continues to stay as [1, 40].

However, when the join (⊔) at line 2 is delayed by one step leading to the
value x = 60 being isolated, the only value of x that passes is [1, 1]. Once in
the loop, the interval expands to [1, 40]. However, upon Widening, the result
degrades to [1,+∞] at the loop-head.

Trace Partitioning as an Optimization Problem 21

1 x = 1 ;
2 i f (∗) x = 60 ;
3 assume (x <= 40) ;
4 whi le (∗) {
5 i f (∗) {
6 x = 40 ;
7 }
8 }

Fig. 6. Ex. widen.c

Naive solutions to this problem would consist of using
abstract domains that have only monotonic operators
(i.e., without widening, like the sign, constant propaga-
tion, the dependency abstract domain, taint, nullness,
etc. domains [19]). These domains are effective because
they satisfy the Ascending Chain Condition (ACC) [19],
which implies that any increasing sequence of elements
eventually stabilizes. In the presence of non-monotonic
operators like widening, a naive solution is to discard
refinements which result in incomparable/worse preci-

sion due to non-monotonicity. In this section, we propose a solution to tackle
non-monotonicity without discarding refinements.

A key insight is that incremental computation solves this problem of non-
monotonicity of operators and further improves precision. For t2 = Succi(t1) as
shown in Incrementality column in Table 1, we saw fix-delayi(H(t1), η1) ⊑♯

FixA(H(t2)). We have see that when the operators are monotone, we have
the equality. Interestingly, we observe that ⊑♯ holds in the presence of non-
monotonicity through forcing trick, where fix-delayi clips the fixpoint compu-
tation (especially on loop heads) using intersection ⊓ with the previous fixpoint
map η1 of t1.

Let d1, d2 be the abstract states of a loophead llh in t1 and t2 = Succi(t1)
respectively such that d2 ̸⊑♯ d1. The intuition is that, since d1 and d2 are sound-
approximation of reachable states at llh, then d1⊓d2 continues to be a sound over-
approximation at llh in t2. fix-delayi, fix-mergei are guaranteed to produce
better precision when non-monotonic operators produce incomparable results.

More formally, for t1, t2 such that t1 < t2 with fixpoint maps ηt1 and ηt2 , we
define Fdelay that computes a new fixpoint map of t2 from ηt1 and ηt2 as follows:

spawns(w1, w2)
def
= ∀i ∈ {0, ..., n− 1} : (sp(i) ∈ L⊔ =⇒ w2[i] ⪯S w1[i] ∧

sp(i) ∈ Llh =⇒ w1[i] =L w2[i])

Fdelay(ηt1 , ηt2)(l, w2) =

{
ηt1(l, w1) ⊓ ηt2(l, w2) if ∃(l, w1) : spawns(w1, w2)

ηt2(l, w2) otherwise

Similarly, the Fmerge operator can be defined in a straightforward way that
effectively captures the invariant state. Note that, after forcing operation the
invariants obtained are no longer inductive. Hence, care must be taken to ensure
the invariants are sound. Having the search exploration path also helps with
reproducing these non-inductive invariants.

7 Implementation and Properties of GSR

We have already presented GSR (Algorithm 1) in Sec. 2.5, and we now present
a reference implementation of its three components.

22 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

Algorithm 3: Next(tb, k,Ω)

Inputs: Best tuple tb, max bound
k, pruned set Ω.

Globals:Previous explored tuple
old tc, set dim = {}, set of
set dims Q = {}, subsetsize = 0

Result: A new t ̸∈ Ω or None
1 Restart:
2 t← old tc;

3 t′ ←

(
⃝

i∈set dim:t[i]≤bound

Succi

)
(t);

4 if t ̸= t′ then
5 t← t′’;
6 if t ̸∈ Ω then return t;
7 else goto Restart;

8 if Q ̸= ∅ then
9 Remove set dim from Q;

10 set dim← Choose from Q;
11 t← tb //Backjumping;
12 goto Restart

13 if bound < k then
14 bound← min(2 ∗ bound, k);
15 Q← {S ⊆ {0, ..., n− 1} | |S| =

subsetsize};
16 goto Restart

17 if subsetsize < n then
18 subsetsize← subsetsize+ 1;
19 bound← 2;
20 goto Restart

21 return None

Algorithm 4: MinimizeA(t, η)

Input: Input tuple t and its
fixpoint map η

Result: Minimal tuple t and its
fixpoint map η

1 while ∃j ∈ {0, ..., n− 1} : η′ =

fix-mergej(t, η) ∧ η′ =♯
£ η do

2 t← Succ−1
j (t);

3 η ← η′

4 return t, η;

Algorithm 5: PruneRegions(tc, tb,Ω)

Input: Current and best
refinements tc, tb such that
tb ≤ tc (requirement), and
pruned regions Ω

Result: Set of pruned regions Ω
1 for every t ∈ Ω do
2 if tc > t then
3 Ω← remove t from Ω;
4 else if tc ≤ t then return Ω ;

5 Ω← Ω ∪ {tc};
6 return Ω;

Next. Consider Algorithm 3, which implements two search strategies for select-
ing the next refinement tuple: Synchronized Delay Search (SDS) and Iterative
Deepening Depth-first Delay Search (IDDDS). To support these strategies, we
maintain 4 global variables: subsetsize, bound, set of subsets Q, and the current
subset of dimensions set dim.

IDDDS begins by incrementally exploring each dimension of the tuple sepa-
rately up to the initial bound. For instance, starting at (0, 0, 0), it progresses to
(1, 0, 0), (2, 0, 0), and cycles through other dimensions like (0, 1, 0) and (0, 2, 0),
continuing up to (0, 0, 2). Once the initial bound is reached, the bound is dou-
bled at line 17, allowing for deeper exploration such as (3, 0, 0), (4, 0, 0), (0, 3, 0),
and (0, 4, 0). After each dimension has been explored individually up to (0, 0, k),
IDDDS expands its focus to include subsets of split-points, applying the same
iterative deepening strategy by incrementing the subsetsize. Starting with com-
binations of split-points like (1, 1, 0) and (2, 2, 0), it then increases delays syn-
chronously within these subsets.

Trace Partitioning as an Optimization Problem 23

For the above example with 3 split-points having indices {0, 1, 2}, initially
Q = {{0}, {1}, {2}} is updated at line 15 with subsetsize = 1. Then set dim
picks each of the subsets fromQ and delays all indices within each subset until the
first deepening bound. Once a subset is explored, Next uses backjumping/non-
chronological backtracking [50] to backtrack to tb, and the set dim picks from Q
the next subset and all indices of set dim are again synchronously delayed until
the bound. Once all subsets are explored, Q is empty and then the deepening
bound is doubled at line 14, and Q is updated again for the same subsetsize.
Once all the subsets are explored through iterative deepening until bound = k,
subsetsize is incremented and the deepening bound is set to bound = 2. The
process is again restarted for the updated subsetsize. This is repeated until the
maximum subsetsize where all possible combinations have been explored up to
the maximum bound k.

SDS consists of the end of the search performed by IDDDS: by beginning
execution with (subsetsize = n, bound = k,Q = {}, set dim = {0, ..., n − 1}),
we enable a traversal that uniformly increases each component of the tuple from
(0, 0, 0) to (k, k, k), applying synchronized delays across all dimensions simulta-
neously.

Minimize. The reference implementation shown in Algorithm 4 is quite simple
and is the same as described in Sec. 3. It takes a current refinement tc and tests
all the immediate predecessors of tc using mergei and fix-mergei, and stops if
we cannot find any that maintains the same precision at £, or repeat from this
predecessor if we found some. This guarantees finding a minimal element in the
precision equivalence class. Note that multiple minimal refinements may exist
and the output varies depending on the order of selection of predecessors.

PruneRegions. The reference implementation shown in Algorithm 5 adds tc to
Ω which is passed as input so Next ensures to not visit a tuple twice. It also
performs crucial optimization to keep only maximal elements within the set Ω.

Theorem 1 (GSR Properties). Let (tr, ηr) = GSR(P,A, k,£) with reference
implementations. The output is

– Correct : It always returns tr and ηr such that ηr ⊑♯
£ FixA(H(tr))

– Complete : It always returns a tcom with a fixpoint map ηcom such that
tcom ≤ tmax and ηcom ⊑♯

£ FixA(tmax), with tmax = (k, ..., k).
– Minimal : If operators of A are monotonic, it returns a tr, ηr such that

∀ti. (ti < tr =⇒ ηr<̂
♯
£FixA(H(ti)))

Summary. Correctness guarantees precision. In the presence of non-monotonic
operators, the resulting ηr depends on the order in which we performed the
incremental fixpoint computations during the exploration. If all the operators
of A are monotonic, then GSR with the reference implementations is correct,
complete, and minimal. If the operators of A are not monotonic, then GSR does
not preserve minimality. However, GSR is still complete in the presence of non-
monotonic operators since it returns a fixpoint map that is at least as precise as
the analysis on tmax.

24 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

8 Experimental Evaluation

The primary goal of this experimental study is to validate the feasibility of our
proposal and to evaluate its potential benefits.

Implementation and set up. Our GSR framework is primarily written in
OCaml with approximately 10,000 lines of code. Our Incremental analysis logic
and delayi graph transformations operate over an explicit CFG graph represen-
tation. Our implementation is parametric in an abstract domain, and the effort
required to instantiate the framework to a new abstract domain is comparable
to the effort required to do so in a classical abstract interpreter framework. We
offer numerical domains such as Constant Propagation, Congruence Domain,
and well-known off-the-shelf abstract domains such as Intervals and Octagons
from APRON [34]. All experiments are performed on a PC 2.8 GHz and 64GB
of RAM, on Ubuntu 22.04 (64-bit).

Standard Configuration. We consider as a split point every location l within
the CFG that has at least two incoming edges. All the experiments are run with
bound k = 1000 except the RQ2.a in Sec. 8.1. We choose the Intervals [19]
to be our main analysis domain for our experiments (except for RQ1.b). We
consider three forms of sensitivity: 1) Control-flow splitting; 2) Loop unrolling;
3) Context-Sensitivity.

Benchmark selection. We take 1126 programs (2924 properties to be checked)
from the SVComp software verification benchmark, from four sub-categories of
”Reach-safety”: control-flow (39 programs, 149 properties), recursive (65 pro-
grams, 65 properties), loops (859 programs, 2579 properties), and sequentialized
(62 programs, 107 properties). We exclude programs known to be UNSAFE
as well as the programs/sub-categories requiring reasoning about arrays, mem-
ory, or floats, as our prototype implementation does not support them now.
Finally, we also consider 24 variants (24 properties) of KsHandler N.c, a key-
board shortcut handler function from the Google Closure library highlighted as
a hard example for sensitivity in abstract interpretation [37]

Search strategy and baselines. Our search strategy uses IDDDS method. We
also consider three baseline strategies: No-split represents the fixpoint computa-
tion on the original program; Full-split applies full trace partitioning up to the
allowed bound k; SDS mirrors traditional methods like 2-CFA [51,44,45], which
analyze all split-points uniformly up to a given depth iteratively.

8.1 Research Questions

We set out to address the following research questions:

RQ1: Feasibility, Efficiency and Genericity. We are interested here in as-
sessing the general feasibility and utility of our approach by (RQ1.a) Compar-
ison with baselines, i.e. to understand how the GSR-IDDDS strategy compare
in terms of both precision and cost against standard baselines, including no trace
partitioning and full trace partitioning. We also seek to demonstrate that our

Trace Partitioning as an Optimization Problem 25

approach is generic, in that it can be used with different domains (RQ1.b Do-
mains) and different kinds of sensitivity (loop unrolling, control-flow splitting,
context-sensitivity, and their combination) (RQ1.c Sensitivity).

RQ2: Exploration of the Design Space. We then seek to understand better
some design points of the method and their practical impact, in order to get
insights for further improvements. Especially, we study the RQ2.a Impact
of bound k, RQ2.b Impact of incremental solving, RQ2.c Impact of
proving one property at a time, RQ2.d Impact of the minimization
phase, and RQ2.e Impact of improving several sensitivities at once.

RQ3: Comparison Against CEGAR Approaches. Finally, we compare our
method with the current well-established CEGAR-based refinement tools.

8.2 RQ1: Feasibility, Efficiency and Genericity

RQ1.a: Comparison with baselines. In Fig.7a, we compared the perfor-
mance of our IDDDS strategy with three baselines and show the statistics on
the total property proved with a timeout of 1 hour. Compared to No-Split and
Full-split strategies (241 and 273 proven properties), IDDDS outperforms them
both (732 proven properties). IDDDS also performs better than the SDS strat-
egy (582 proven properties). Especially, SDS suffers from path explosion on the
benchmark sets where there is significant control-flow.

Experiments with IDDDS with bound k = 1000 show that large bounds
are required for each benchmark category as shown in Fig. 8a, for instance:
Control-flow (k=73), Recursive (k=25), Loops (k=101), Sequentialized (k=20),
KsHandlers (k=158). Several split-points also need to be delayed for verifying
properties for each program. The average number of split-points delayed out
of an average total number of split-points are: Control-flow (15/34), Recursive
(2/2), Loops (3/11), Sequentialized (2/57), KsHandlers (40/101).

To conclude, we showed that our method indeed improves over all of the No-
split, Full-split, and SDS strategies, being able to prove significantly more goals.
Also, large bounds k are required on all benchmark categories.

RQ1.b: Domains. Here we study the behavior of our approach on 4 differ-
ent numerical domains, thereby showing that our approach is independent of
the abstract domain being used. Fig.7c shows the clear positive impact of our
strategy for each considered domain. For example, for interval domain with 1hr
timeout, we go from 241 (No-Split) to 732 successes upon activating splits. For
Constant Propagation, we go from 5 to 91. For Octagons, we go from 289 to 695.
For Intervals+Congruence, we go from 241 to 733. While the No-Split version
Octagons performed better than Intervals No-Split, however, it is interesting to
notice that Octogans sometimes time out on programs where Intervals do not
due to more expensive domain operations.

By instantiating the algorithm over four numerical domains, we show that
our method is generic and brings improvement to different domains.

26 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

0 200 400 600

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

IDDDS

No-Split

SDS

Full-Split

(a) Impact on Precision

0 200 400 600

Property Instances Solved

10−4

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

Constant-Propagation

Intervals

Interval-Congruence

Octagons

Constant-Propagation-NS

Intervals-NS

Interval-Congruence-NS

Octagons-NS

(c) Impact on domains

0 200 400 600

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

No-Split

Join-splitting

Loop-Unrolling

Context-Sensitivity

All-Repairs

(d) Impact of delays

0 200 400 600

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

10

20

50

100

1k

10k

100k

(b) Impact of bound k

0 200 400 600

Property Instances Solved

101

102

103

104

105

106

107

T
ot
al
T
ra
ns
fe
r
F
un
ct
io
ns

Incremental

Non-Incremental

(f) Impact of incrementality

0 250 500 750 1000 1250

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

CPA-default

CPA-Predicate-Abstraction

CPA-Value-Analysis

Ultimate-Automizer

IDDDS

Intervals:No-Split

Octagons:No-Split

(e) Comparison to CEGAR

Fig. 7. Cactus plots showing the time to completion for solving property instances by
different search strategies. The x-axis represents the total number of instances solved.
Except for (e) the y-axis (logarithmic scale) corresponds to the time taken in seconds,
and as for (f) y-axis (logarithmic scale) corresponds to the total transfer functions
required to prove properties. In (c), NS denotes No-Split version

.

RQ1.c: Sensitivity. We show in Fig. 7d that we can handle different kinds of
sensitivity (loop unrolling, control-flow splitting, and context-sensitivity), and
furthermore, combining all these in a single search instance is very useful. Our
experiments showed that a combined method solved 732 instances, surpassing the
results of individual techniques: join-splitting with 463 instances, loop-unrolling
with 389, and context-sensitivity with 346. Generally, individual strategies ex-
plore a restricted search space compared to the combined strategy, missing re-
finements that could prove properties.

To conclude, we show that we can consider several forms of sensitivity and
that combining them proves significantly more properties than using a single kind.

8.3 RQ2: Exploration of the Design Space

RQ2.a: Impact of Bound k. We show in Fig.7b the impact of bound k for
various values k = 10, 20, 50, 100, 1000, 10000, 100000. First, it is interesting to
see that we can afford very large values of k through our search algorithm IDDDS.
Interestingly, extra large k ≫ 1000 does not produce new timeouts compared
to the default k = 1000, and the time taken to prove properties remains almost
the same as shown in the plot irrespective of the bound. Moreover, results show

Trace Partitioning as an Optimization Problem 27

0 200 400 600

Property Instances Solved

100

101

102

M
ax
im
um

b
ou
nd

k
ne
ed
ed IDDDS

SDS

(a) Maximum bound k

needed

0 200 400 600 800

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
) Sequential

Non-Sequential

(b) Impact of proving one

property at a time

0 200 400 600

Property Instances Solved

10−3

10−2

10−1

100

101

102

103

C
om

pu
ta
ti
on

T
im
e
(s
)

Incremental

Non-Incremental

(e) Impact of
Incrementality (Time)

Fig. 8. a) Cactus plot illustrates the maximum bound k needed to prove properties
for all programs. b,c) Cactus plots showing the time to completion for solving prop-
erty instances by different search strategies: the x-axis represents the total number of
instances solved; the y-axis (log scale) corresponds to the time taken in seconds.

indeed that large bounds > 100 are essential for the considered properties, with
the optimal bound (in terms of time vs. success) being 158. With the timeout of
1hr, 333 successes for k =10, 350 for k =20, 450 for k =50, 634 for k =100, 732
for k =1000, 10000, and 100k.

To conclude, we show that our search algorithm can indeed afford large bound
’k’ without affecting the time taken to prove properties and that such large bounds
are indeed necessary on the considered benchmarks.

RQ2.b: Incremental Computation. We used the number of computed ab-
stract transfer functions to measure the impact of incremental computation
(which is proportional to the time taken by the analysis). Results in Fig.7f
demonstrate the important impact of incremental fixpoint computation, achiev-
ing a significant speedup (188x) on transfer functions and fewer timeouts. For
a timeout of 1hr and bound k = 1000, for solving 2926 instances, we have 732
successes with Incrementality. Moreover, without incrementally we solved only
450 instances while timing out on the rest.

To conclude, we show that the IDDDS algorithm with Incremental computa-
tion outperforms the Non-incremental version by several orders of magnitude.

RQ2.c: Impact of proving one property at a time. Here, we assess whether
it is preferable to prove all the properties simultaneously (which could remove
redundant computations), or to perform a different search for each property,
proving them sequentially (with the hope of smaller program refinements for
each property). We observe in Fig. 8b that with timeout 1hr and k = 1000,
while sequential strategy proved 732 instances, non-sequential only solved 660
instances. For these timed-out programs, each property to be proved requires
different delayi operation(s), and hence the only refinement that can prove
all properties at once requires all such delayi operations and leads to path
explosion. This is especially observed in Control-flow and KsHandlers categories
where there are several properties and several split-points.

To conclude, we show that proving one property at a time works better than
proving them all at once, as it avoids path explosion.

28 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

RQ2.d: Impact of the minimization. In all the experiments that we per-
formed on the SVComp benchmark, the minimization phase was never able to
reduce the program size during the intermediate step. We did check that this
minimization worked on the example in Figure 1, as well as in another exper-
iment using extended tuples on a challenging example [37]. Normal tuples Nn

solve examples in KsHandlers when proving one property at a time, yet we saw
minimization was necessary when proving all properties at the same time.

To conclude, we show that the minimization phase only rarely triggers in
practice, but is important on some complex examples.

RQ2.e: Impact of improving several sensitivities at once. In our experi-
ments, we never observed a property that, during the IDDDS search, was proved
with subsetsize = 2 without being first proved by subsetsize = 1 (i.e., that re-
quires several tuple dimensions to be incremented simultaneously). This is good
news, as the search space when limiting the search to subsetsize = 1 is much
smaller than with 2,3, etc. However, these examples exist in theory and in prac-
tice: in the Sequentialized category of SVComp, we performed a manual check
and saw that programs require subsetsize = 3 to verify the property – it cannot
be verified with subsetsize = 1, 2. An interesting future work is in picking the
right choice of locations of interest £, as it helps retain delays that could lead
to improvements at selected locations and helps avoid needing subsetsize > 1.

To conclude, even if there exists programs where several dimensions have to be
improved simultaneously, many properties can be proved by limiting the search to
improving only one dimension at a time, considerably reducing the search space.

8.4 RQ3: Comparison Against CEGAR Approaches

We consider the two mature and well-optimized software model-checkers Ulti-
mate Automizer and CPA-Checker, overall winners of the SVComp-2024 com-
petition. CPA-Checker includes a different model-checking algorithms like Pred-
icate Abstraction (CPA-PA) [6], Value Analysis by CEGAR [11] (CPA-VA),
k-induction and others through its default configuration (CPA). Ultimate Au-
tomizer (UA) is based on Trace Abstraction [30].In this experiment, we consider
these 4 variants, CPA-PA, CPA-VA, CPA (default), UA.

Results are shown in Fig.7e, and uniquely proved instances are reported in
Table 2 as #U (GSR-IDDDS proves the instances and the competitor does not)
and #N (the competitor proves the instance and GSR-IDDDS does not). As
expected, our early prototype cannot beat the best SVComp competitors, that
have been there for several years. Yet, several significant facts can be pointed
out. First, our prototype without splitting performs very bad proving only 241
properties, while adding IDDDS dramatically improves its performance by prov-
ing 724 properties. Model-checkers CPAChecker proves 953 properties and UA
proves 1286 properties. Indeed, our approach is competitive for a time out of 10s
(realistic setting in some verification scenarios), and it can still beat CPAChecker
with pure predicate abstraction (698 successes) or pure Value Analysis (238 suc-
cesses) for an overall time out of 900s (SVComp time out). Finally, our method
is able to prove some instances that the other approaches cannot.

Trace Partitioning as an Optimization Problem 29

Table 2. Number of unique instances solved with respect to the state-of-the-art model-
checkers. #U: uniquely solved by our method GSR-IDDDS, #N: uniquely solved by
competitor against GSR-IDDDS (1126 programs and 2924 properties)

vs. CPA-PA vs. CPA-VA vs. CPA vs. UA

Properties #U #N #U #N #U #N #U #N

2924 53 22 480 2 11 241 34 591

8.5 Conclusion and Lessons Learned

These experiments demonstrate that our framework can be implemented in a
reasonably efficient way for different domains and different sensitivities, and
that it already provides a clear value on standard benchmarks Furthermore,
these experiments yield interesting practical insights into our general method.
In particular, we discovered that:

L1 Incremental computation makes the searching approach feasible (as most
fixpoint recomputation only requires a few recomputation steps)

L2 While in theory it is sometimes needed to simultaneously modify several
points of the program, improving program points one after the other is generally
sufficient and considerably reduces the search space

L3 The iterative deepening strategy allows quickly identifying interesting pro-
gram improvements without getting stuck, and makes the choice of a bound
parameter k unimportant – hence no need for paramter fine-tuning

L4 Combining different kinds of program refinement (delaying joins, loop
unrolling, and improved context-sensitivity) is important. The precision in many
programs can only improve when those are done simultaneously

L5 Decreasing the program graph size as soon as possible is very important
– notably by backtracking on useless splits. On the other hand, our merging
algorithm is experimentally rarely useful

L6 When considering different properties, it is better to consider them in
isolation (one refinement per property) rather than proving them all at once.

9 Related Work

Completeness in Abstract Interpretation. Giacobazzi et al. first explored
abstraction refinement in abstract interpretation [25], but their approach did not
offer a direct algorithm for refining abstractions. In contrast, our method can
be seen as a specialized way of performing domain refinement, and we provide
insight into automation. Classes of complete programs for a given abstraction
have been recently studied in a pioneering line of work [24,14,15]. However, all
these works seek only to evaluate completeness. In contrast, we progressively
repair analysis towards completeness with respect to an abstract domain. Bruni
et al. recently proposes [16] to progressively repair its local incompleteness for
any given domain. In contrast, our repair strategies are domain-independent as
long as we are given implementations for operators [[.]],⊔, [[.]]∗,∇, etc.

Sensitivity through disjunctions. Generic sensitivity techniques based on
control-flow are proposed to improve precision through disjunctions in static

30 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

analyses such as flow-sensitivity[18], path-sensitivity [32,7,22,23], value-sensitivity
[33], trace-sensitivity [42,46,29], views [37], and dynamic partitioning [12]. How-
ever, these frameworks are not semantic-directed. Diverse forms of context-
sensitivity [47,43,52,35] are proposed to improve precision. The path sensitivity
work by Das et al. [22] provides a criterion for which places to split by encoding
the property into an automaton while providing a heuristic to merge paths.

Finally, some semantic-directed refinement techniques do exist, yet special-
ized to particular domains: Li et al [39] for shape analysis, Liang et al [40] for
points-to analysis, and other refinement-based approaches [28,53] for pointer
analysis. to client queries, but these are specialized for pointer analyses. Bardin
et al. [9] also proposes a refinement specialized to binary-level CFG recovery.

Other Refinement Techniques. Efficient algorithmic solutions were first in-
troduced in model-checking by Clarke et al. [17,8,31] as iterative refinements
through CEGAR. But these techniques are specialized and should be manu-
ally adapted to each domain [6,11,30,8]. Zhang et al [56] present a CEGAR-
based technique for finding the optimum abstraction, a cheapest abstraction
that proves the query.

Program transformations as a way to improve analysis results has a long
history. Some works are based on explicit transformations, such as hot paths
isolation [3], loop re-writing techniques [5,48,26,21,27]. Vechev et al. [55] com-
bines both abstraction and program refinement for synchronization synthesis.

10 Conclusion

In this work, we tackle the challenge of automatically tuning trace partitioning
for a given program and property, casting the problem as an optimization task
and solving it through search-based methods. We identify key difficulties and
propose technical solutions to address them (e.g., a new tuple representation of
program refinements). Experiments validate the feasibility of our approach.

Future Work. We see several directions for improvements. First, as the frame-
work is domain-independent, integrating new domains poses no theoretical dif-
ficulties, and our implementation would clearly benefit from memory-oriented
domains. Second, we could try to explore the search space faster through paral-
lelization, as different refinements can be explored in parallel and independently-
improved tuples can be easily joined (by taking the maximum of every component
to accelerate refinement). Finally, new split-points could be injected on demand,
opening our technique to more general sites defined from semantic information
(e.g., value set approximation) while keeping a finite branching per split.

Acknowledgments

This work was supported in part by the National Research Agency (grant ANR-
22-CE39-0014-03) and France 2030 (grants ANR-22-PECY-0005 and ANR-22-
PECY-0007). We are particularly grateful to Rishika Gupta, Alakh Dhruv Chopra,
and Ranadeep Biswas, for the support, discussions, and comments.

Trace Partitioning as an Optimization Problem 31

References

1. Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.): Handbook of Logic in Com-
puter Science (Vol. 3): Semantic Structures. Oxford University Press, Inc., USA
(1995)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World student series edition, Addison-
Wesley (1986), https://www.worldcat.org/oclc/12285707

3. Ammons, G., Larus, J.R.: Improving data-flow analysis with path profiles. In:
Davidson, J.W., Cooper, K.D., Berman, A.M. (eds.) Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and Implemen-
tation (PLDI), Montreal, Canada, June 17-19, 1998. pp. 72–84. ACM, Mon-
treal, Canada (1998). https://doi.org/10.1145/277650.277665, https://doi.org/
10.1145/277650.277665

4. Baier, D., Beyer, D., Chien, P., Jankola, M., Kettl, M., Lee, N., Lemberger, T.,
Rosenfeld, M.L., Spiessl, M., Wachowitz, H., Wendler, P.: Cpachecker 2.3 with
strategy selection - (competition contribution). In: TACAS (3). Lecture Notes in
Computer Science, vol. 14572, pp. 359–364. Springer (2024)

5. Balakrishnan, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Refining the con-
trol structure of loops using static analysis. In: Chakraborty, S., Halbwachs, N.
(eds.) Proceedings of the 9th ACM & IEEE International conference on Em-
bedded software, EMSOFT 2009, Grenoble, France, October 12-16, 2009. pp.
49–58. ACM, Grenoble, France (2009). https://doi.org/10.1145/1629335.1629343,
https://doi.org/10.1145/1629335.1629343

6. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Burke, M., Soffa, M.L. (eds.) Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), Snowbird, Utah, USA, June 20-22, 2001. pp. 203–213. ACM, Utah,
USA (2001). https://doi.org/10.1145/378795.378846, https://doi.org/10.1145/
378795.378846

7. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties
of interfaces. In: Dwyer, M.B. (ed.) Model Checking Software, 8th Interna-
tional SPIN Workshop, Toronto, Canada, May 19-20, 2001, Proceedings. Lec-
ture Notes in Computer Science, vol. 2057, pp. 103–122. Springer, Toronto,
Canada (2001). https://doi.org/10.1007/3-540-45139-0 7, https://doi.org/10.

1007/3-540-45139-0_7

8. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: Launchbury, J., Mitchell, J.C. (eds.) Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, OR, USA, January 16-18, 2002. pp. 1–3. ACM, Portland,
OR, USA (2002). https://doi.org/10.1145/503272.503274, https://doi.org/10.
1145/503272.503274

9. Bardin, S., Herrmann, P., Védrine, F.: Refinement-based CFG reconstruction
from unstructured programs. In: Jhala, R., Schmidt, D.A. (eds.) Verification,
Model Checking, and Abstract Interpretation - 12th International Conference,
VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings. Lecture
Notes in Computer Science, vol. 6538, pp. 54–69. Springer, Austin, TX, USA
(2011). https://doi.org/10.1007/978-3-642-18275-4 6, https://doi.org/10.1007/
978-3-642-18275-4_6

https://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/277650.277665
https://doi.org/10.1145/277650.277665
https://doi.org/10.1145/277650.277665
https://doi.org/10.1145/1629335.1629343
https://doi.org/10.1145/1629335.1629343
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1145/378795.378846
https://doi.org/10.1007/3-540-45139-0_7
https://doi.org/10.1007/3-540-45139-0_7
https://doi.org/10.1007/3-540-45139-0_7
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1007/978-3-642-18275-4_6

32 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

10. Beyer, D.: Competition on software verification and witness validation: SV-
COMP 2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 29th International Con-
ference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13994, pp.
495–522. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8 29, https:
//doi.org/10.1007/978-3-031-30820-8_29

11. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) Fundamental Approaches to
Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7793, pp. 146–162. Springer, Rome, Italy (2013). https://doi.org/10.1007/978-
3-642-37057-1 11, https://doi.org/10.1007/978-3-642-37057-1_11

12. Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct. Pro-
gram. 2(4), 407–423 (1992). https://doi.org/10.1017/S0956796800000496, https:
//doi.org/10.1017/S0956796800000496

13. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner,
D., Broy, M., Pottosin, I.V. (eds.) Formal Methods in Programming and Their Ap-
plications, International Conference, Akademgorodok, Novosibirsk, Russia, June 28
- July 2, 1993, Proceedings. Lecture Notes in Computer Science, vol. 735, pp. 128–
141. Springer (1993). https://doi.org/10.1007/BFb0039704, https://doi.org/10.
1007/BFb0039704

14. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract ex-
tensionality: on the properties of incomplete abstract interpretations. Proc. ACM
Program. Lang. 4(POPL), 28:1–28:28 (2020). https://doi.org/10.1145/3371096,
https://doi.org/10.1145/3371096

15. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally complete
abstract interpretations. In: 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp. 1–
13. IEEE, Rome, Italy (2021). https://doi.org/10.1109/LICS52264.2021.9470608,
https://doi.org/10.1109/LICS52264.2021.9470608

16. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: Abstract interpretation re-
pair. In: Jhala, R., Dillig, I. (eds.) PLDI ’22: 43rd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implementa-
tion, San Diego, CA, USA, June 13 - 17, 2022. pp. 426–441. ACM, CA,
USA (2022). https://doi.org/10.1145/3519939.3523453, https://doi.org/10.

1145/3519939.3523453

17. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification, 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-
19, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1855, pp. 154–169.
Springer, Chicago, IL, USA (2000). https://doi.org/10.1007/10722167 15, https:
//doi.org/10.1007/10722167_15

18. Cousot, P.: Semantic foundations of program analysis. In: Program flow analysis:
theory and applications, pp. 303–342. Prentice Hall, new jersey (1981)

19. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge, Mas-
sachusetts (2021)

https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1017/S0956796800000496
https://doi.org/10.1017/S0956796800000496
https://doi.org/10.1017/S0956796800000496
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1145/3371096
https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15

Trace Partitioning as an Optimization Problem 33

20. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977. pp. 238–252. ACM, California,
USA (1977). https://doi.org/10.1145/512950.512973, https://doi.org/10.1145/
512950.512973

21. Cyphert, J., Breck, J., Kincaid, Z., Reps, T.W.: Refinement of path expres-
sions for static analysis. Proc. ACM Program. Lang. 3(POPL), 45:1–45:29 (2019).
https://doi.org/10.1145/3290358, https://doi.org/10.1145/3290358

22. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in
polynomial time. In: Knoop, J., Hendren, L.J. (eds.) Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Berlin, Germany, June 17-19, 2002. pp. 57–68. ACM, Berlin,
Germany (2002). https://doi.org/10.1145/512529.512538, https://doi.org/10.

1145/512529.512538

23. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: Knoop, J., Hendren, L.J. (eds.) Proceed-
ings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 17-19, 2002. pp. 234–245.
ACM, Berlin, Germany (2002). https://doi.org/10.1145/512529.512558, https:

//doi.org/10.1145/512529.512558

24. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In:
Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. pp. 261–273. ACM, Mumbai, In-
dia (2015). https://doi.org/10.1145/2676726.2676987, https://doi.org/10.1145/
2676726.2676987

25. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (2000). https://doi.org/10.1145/333979.333989,
https://doi.org/10.1145/333979.333989

26. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invari-
ants for bound analysis. In: Hind, M., Diwan, A. (eds.) Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp. 375–385. ACM, Dublin,
Ireland (2009). https://doi.org/10.1145/1542476.1542518, https://doi.org/10.

1145/1542476.1542518

27. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Zorn, B.G.,
Aiken, A. (eds.) Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2010, Toronto, On-
tario, Canada, June 5-10, 2010. pp. 292–304. ACM, Toronto, Ontario (2010).
https://doi.org/10.1145/1806596.1806630, https://doi.org/10.1145/1806596.

1806630

28. Guyer, S.Z., Lin, C.: Client-driven pointer analysis. In: Cousot, R. (ed.) Static
Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June
11-13, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2694, pp. 214–
236. Springer, CA, USA (2003). https://doi.org/10.1007/3-540-44898-5 12, https:
//doi.org/10.1007/3-540-44898-5_12

29. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based par-
titioning using control flow. In: Levi, G. (ed.) Static Analysis, 5th Inter-

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3290358
https://doi.org/10.1145/3290358
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/512529.512558
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1542476.1542518
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1007/3-540-44898-5_12
https://doi.org/10.1007/3-540-44898-5_12
https://doi.org/10.1007/3-540-44898-5_12

34 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

national Symposium, SAS ’98, Pisa, Italy, September 14-16, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1503, pp. 200–214. Springer,
Pisa, Italy (1998). https://doi.org/10.1007/3-540-49727-7 12, https://doi.org/
10.1007/3-540-49727-7_12

30. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction.
In: Palsberg, J., Su, Z. (eds.) Static Analysis, 16th International Sympo-
sium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5673, pp. 69–85. Springer, CA, USA
(2009). https://doi.org/10.1007/978-3-642-03237-0 7, https://doi.org/10.1007/
978-3-642-03237-0_7

31. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
Launchbury, J., Mitchell, J.C. (eds.) Conference Record of POPL 2002: The
29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002. pp. 58–70. ACM, Portland,OR,
USA (2002). https://doi.org/10.1145/503272.503279, https://doi.org/10.1145/
503272.503279

32. Holley, L.H., Rosen, B.K.: Qualified data flow problems. IEEE Trans. Software Eng.
7(1), 60–78 (1981). https://doi.org/10.1109/TSE.1981.234509, https://doi.org/
10.1109/TSE.1981.234509

33. Jeannet, B.: Dynamic partitioning in linear relation analysis: Application to
the verification of reactive systems. Formal Methods Syst. Des. 23(1), 5–37
(2003). https://doi.org/10.1023/A:1024480913162, https://doi.org/10.1023/A:
1024480913162

34. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667.
Springer, Grenoble (2009). https://doi.org/10.1007/978-3-642-02658-4 52, https:
//doi.org/10.1007/978-3-642-02658-4_52

35. Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to anal-
ysis. In: Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seat-
tle, WA, USA, June 16-19, 2013. pp. 423–434. ACM, Seattle, USA (2013).
https://doi.org/10.1145/2491956.2462191, https://doi.org/10.1145/2491956.

2462191

36. Kildall, G.A.: A unified approach to global program optimization. In: Fis-
cher, P.C., Ullman, J.D. (eds.) Conference Record of the ACM Sympo-
sium on Principles of Programming Languages, Boston, Massachusetts,
USA, October 1973. pp. 194–206. ACM Press, Massachusetts, USA (1973).
https://doi.org/10.1145/512927.512945, https://doi.org/10.1145/512927.

512945

37. Kim, S., Rival, X., Ryu, S.: A theoretical foundation of sensitivity in an abstract
interpretation framework. ACM Trans. Program. Lang. Syst. 40(3), 13:1–13:44
(2018). https://doi.org/10.1145/3230624, https://doi.org/10.1145/3230624

38. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search.
Artif. Intell. 27(1), 97–109 (1985). https://doi.org/10.1016/0004-3702(85)90084-
0, https://doi.org/10.1016/0004-3702(85)90084-0

39. Li, H., Berenger, F., Chang, B.E., Rival, X.: Semantic-directed clumping of
disjunctive abstract states. In: Castagna, G., Gordon, A.D. (eds.) Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-

https://doi.org/10.1007/3-540-49727-7_12
https://doi.org/10.1007/3-540-49727-7_12
https://doi.org/10.1007/3-540-49727-7_12
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
https://doi.org/10.1109/TSE.1981.234509
https://doi.org/10.1109/TSE.1981.234509
https://doi.org/10.1109/TSE.1981.234509
https://doi.org/10.1023/A:1024480913162
https://doi.org/10.1023/A:1024480913162
https://doi.org/10.1023/A:1024480913162
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/3230624
https://doi.org/10.1145/3230624
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/0004-3702(85)90084-0

Trace Partitioning as an Optimization Problem 35

guages, POPL 2017, Paris, France, January 18-20, 2017. pp. 32–45. ACM, Paris,
France (2017). https://doi.org/10.1145/3009837.3009881, https://doi.org/10.

1145/3009837.3009881

40. Liang, P., Tripp, O., Naik, M.: Learning minimal abstractions. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011. pp. 31–42. ACM, Austin, TX, USA (2011).
https://doi.org/10.1145/1926385.1926391, https://doi.org/10.1145/1926385.

1926391

41. Martin, F.: Generating program analyzers. Ph.D. thesis, Saarland Univer-
sity, Saarbrücken, Germany (1999), http://scidok.sulb.uni-saarland.de/

volltexte/2004/203/index.html

42. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, S. (ed.) Programming Languages and Systems, 14th European
Symposium on Programming,ESOP 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,
April 4-8, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3444, pp. 5–
20. Springer, Edinburgh, UK (2005). https://doi.org/10.1007/978-3-540-31987-0 2,
https://doi.org/10.1007/978-3-540-31987-0_2

43. Milanova, A.L., Rountev, A., Ryder, B.G.: Parameterized object sensitivity
for points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–
41 (2005). https://doi.org/10.1145/1044834.1044835, https://doi.org/10.1145/
1044834.1044835

44. Rival, X.: Understanding the origin of alarms in astrée. In: Hankin, C., Siveroni,
I. (eds.) Static Analysis, 12th International Symposium, SAS 2005, London, UK,
September 7-9, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3672,
pp. 303–319. Springer, London, UK (2005). https://doi.org/10.1007/11547662 21,
https://doi.org/10.1007/11547662_21

45. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5), 26 (2007). https://doi.org/10.1145/1275497.1275501,
https://doi.org/10.1145/1275497.1275501

46. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) Static Analysis, 13th International
Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006, Proceedings. Lecture
Notes in Computer Science, vol. 4134, pp. 3–17. Springer, Seoul, Korea (2006).
https://doi.org/10.1007/11823230 2, https://doi.org/10.1007/11823230_2

47. Sharir, M., Pnueli, A., et al.: Two approaches to interprocedural data flow analysis.
New York University. Courant Institute of Mathematical Sciences . . . , New York
(1978)

48. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant genera-
tion using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp.
703–719. Springer, Snowbird, UT, USA (2011). https://doi.org/10.1007/978-3-642-
22110-1 57, https://doi.org/10.1007/978-3-642-22110-1_57

49. Shivers, O.G.: Control-flow analysis of higher-order languages or taming lambda.
Carnegie Mellon University (1991)

50. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,

https://doi.org/10.1145/3009837.3009881
https://doi.org/10.1145/3009837.3009881
https://doi.org/10.1145/3009837.3009881
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1145/1926385.1926391
https://doi.org/10.1145/1926385.1926391
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/203/index.html
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1007/11547662_21
https://doi.org/10.1007/11547662_21
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1007/11823230_2
https://doi.org/10.1007/11823230_2
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-22110-1_57

36 Charles Babu M, Matthieu Lemerre, Sébastien Bardin, JY Marion

USA, November 10-14, 1996. pp. 220–227. IEEE Computer Society / ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607, https://doi.org/10.1109/ICCAD.
1996.569607

51. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Found. Trends Program.
Lang. 2(1), 1–69 (2015). https://doi.org/10.1561/2500000014, https://doi.org/
10.1561/2500000014

52. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: un-
derstanding object-sensitivity. In: Ball, T., Sagiv, M. (eds.) Proceedings of
the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 17–30.
ACM, USA (2011). https://doi.org/10.1145/1926385.1926390, https://doi.org/
10.1145/1926385.1926390

53. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analy-
sis for java. In: Schwartzbach, M.I., Ball, T. (eds.) Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and Imple-
mentation, Ottawa, Ontario, Canada, June 11-14, 2006. pp. 387–400. ACM,
Canada (2006). https://doi.org/10.1145/1133981.1134027, https://doi.org/10.
1145/1133981.1134027

54. Stein, B., Chang, B.E., Sridharan, M.: Demanded abstract interpretation.
In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implemen-
tation, Virtual Event, Canada, June 20-25, 2021. pp. 282–295. ACM,
Canada (2021). https://doi.org/10.1145/3453483.3454044, https://doi.org/10.
1145/3453483.3454044

55. Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchro-
nization. In: Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010. pp. 327–338. ACM, Madrid,
Spain (2010). https://doi.org/10.1145/1706299.1706338, https://doi.org/10.

1145/1706299.1706338

56. Zhang, X., Naik, M., Yang, H.: Finding optimum abstractions in para-
metric dataflow analysis. In: Boehm, H., Flanagan, C. (eds.) ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp. 365–376. ACM, Seat-
tle, WA (2013). https://doi.org/10.1145/2491956.2462185, https://doi.org/10.
1145/2491956.2462185

https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/1706299.1706338
https://doi.org/10.1145/2491956.2462185
https://doi.org/10.1145/2491956.2462185
https://doi.org/10.1145/2491956.2462185

	Trace Partitioning as an Optimization Problem

