
A Dependent Nominal Physical Type System for Static
Analysis of Memory in Low Level Code (with appendices)
JULIEN SIMONNET, University Paris-Saclay, CEA, List, France
MATTHIEU LEMERRE, University Paris-Saclay, CEA, List, France
MIHAELA SIGHIREANU, University Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, France

We tackle the problem of checking non-proof-carrying code, i.e. automatically proving type-safety (implying in
our type system spatial memory safety) of low-level C code or of machine code resulting from its compilation
without modification. This requires a precise static analysis that we obtain by having a type system which (i)
is expressive enough to encode common low-level idioms, like pointer arithmetic, discriminating variants by
bit-stealing on aligned pointers, storing the size and the base address of a buffer in distinct parts of the memory,
or records with flexible array members, among others; and (ii) can be embedded in an abstract interpreter.
We propose a new type system that meets these criteria. The distinguishing feature of this type system is
a nominal organization of contiguous memory regions, which (i) allows nesting, concatenation, union, and
sharing parameters between regions; (ii) induces a lattice over sets of addresses from the type definitions;
and (iii) permits updates to memory cells that change their type without requiring one to control aliasing.
We provide a semantic model for our type system, which enables us to derive sound type checking rules by
abstract interpretation, then to integrate these rules as an abstract domain in a standard flow-sensitive static
analysis. Our experiments on various challenging benchmarks show that semantic type-checking using this
expressive type system generally succeeds in proving type safety and spatial memory safety of C and machine
code programs without modification, using only user-provided function prototypes.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Theory of

computation→ Type theory; Program analysis.

Additional Key Words and Phrases: Abstract interpretation, Dependent types, Spatial memory safety, Type
checking, Typed C

ACM Reference Format:

Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu. 2024. A Dependent Nominal Physical Type
System for Static Analysis of Memory in Low Level Code (with appendices). Proc. ACM Program. Lang. 8,
OOPSLA2, Article 272 (October 2024), 45 pages. https://doi.org/10.1145/3689712

1 Introduction
In heap-manipulating programs, one of the main issues is finding and preserving memory invariants
describing the contents of heap cells, in particular when aliasing is allowed. The problem happens
when a reference relies on an invariant on the contents of a memory region (i.e., a continuous
sequence of bytes in memory), but this invariant is broken due to modification by another reference
to or inside this region. For example, consider the encoding in C of an interval [𝑎, 𝑏] by a record
itv with two integer fields. The internal invariant of itv is that 𝑎 ≤ 𝑏. A pointer p to a value of
itv might expect this invariant to hold, but the invariant may be broken if a pointer pb to the

Authors’ Contact Information: Julien Simonnet, University Paris-Saclay, CEA, List, Palaiseau, France, julien.simonnet@cea.fr;
Matthieu Lemerre, University Paris-Saclay, CEA, List, Palaiseau, France, matthieu.lemerre@cea.fr; Mihaela Sighireanu,
University Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, Gif-sur-Yvette, France, mihaela.sighireanu@ens-paris-saclay.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART272
https://doi.org/10.1145/3689712

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

HTTPS://ORCID.ORG/0009-0007-1984-4958
HTTPS://ORCID.ORG/0000-0002-1081-0467
HTTPS://ORCID.ORG/0000-0002-1925-089X
https://doi.org/10.1145/3689712
https://orcid.org/0009-0007-1984-4958
https://orcid.org/0000-0002-1081-0467
https://orcid.org/0000-0002-1925-089X
https://doi.org/10.1145/3689712

272:2 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

second field at p is used to modify the value of 𝑏 to a value strictly smaller than the first field 𝑎. A
classical instance of this problem is the need to forbid polymorphic references in the ML language
family [30, 78].

There are three main ways to deal with this problem. The first class of solutions, named read-only
in the following, consists in just forbidding writing to memory cells (only the freshly allocated
values can be stored). This is the main solution in pure functional programming languages, but
read-only fields are also common in imperative languages. However, this solution is impractical for
programs where in-place memory writes are important, e.g., for algorithmic reasons or for need of
manual control over memory allocation.
The second class of solutions, named aliasing control in the following, tracks precisely all the

references to a memory cell. For instance, separation logic [65] was designed to encode the “complex
restrictions on the sharing of [data] structures”. Linear, uniqueness or ownership types [14] are
used to limit the number of simultaneous references to an address. This class of solutions enables
complex reasoning about the behavior of a program, including the ability to change the memory
region invariant when it can be shown that no other references rely on the initial invariant (i.e., a
strong update [75]). However, these solutions require complex reasoning on the program state. For
example, they may require to track all the aliases to the changed memory region, which is difficult
when the pattern used for sharing references is complex, like in garbage-collected programs or
operating systems code. Another illustration of this difficulty is the need to abandon structural
properties [77] when aliasing is controlled using a type system (e.g., using ownership types).
The third class of solutions does not restrict aliasing, but permits only heap modifications that

preserve the invariants (i.e., weak updates). The drawback of this class is precision, because these
solutions are unable to verify memory invariants that change over time, as needed for temporal
memory safety. The benefit is simplicity, providing for simpler, tractable and efficient reasoning
on data structures with complex sharing patterns, in particular by automated analyses that target
spatial memory safety. Moreover, the memory is allocated in most programs on the heap to hold
values of some type which is unchanged over time. This flow-insensitive heap-type relation is thus
generally sufficient to prove spatial memory safety as a consequence of type safety in a suitable type
system. Moreover, when use-after-free is impossible, e.g., when the memory is statically allocated
or it is managed by a garbage collector based on tracing or reference counting, this invariant is
enough to prove full memory safety.

In this article, our main goal is to perform automated memory analyses using these type-

based flow-insensitive memory invariants specified by the user, so as to prove type safety,

implying spatial memory safety in our type system, in low-level heap-manipulating

programs without modification of the source code.
By low-level programs we mean programs implemented in low-level languages like C or machine

code. The memory invariants in those programs must use low-level concepts, i.e., at the level of byte
representation of values. Consequently, expressing these invariants using types requires expressive
features, in particular, dependent types. For instance, low-level arrays are encoded as a pointer (the
array base) to a region whose size is given in another integer (the array size), which is a classic
example of the use of dependent types. Furthermore, the bytes holding the array base may not adjoin
the array size, illustrating the need for non-local invariants [33]. Another important feature is the
frequent usage of interior pointers (pointing inside a record), and of functions operating over interior
pointers of different datatypes as soon as part of the data layout is compatible (this is called physical
typing in [11, 63]). Finally, low-level languages heavily make use of idioms allowing for efficient
usage of the computer resources, such as union types, or taking advantage of pointer alignment to
reuse the least significant bits in pointer values (bit-stealing [7]).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:3

Our main contribution is an expressive structural type system, designed to automatically

prove spatial memory safety of low-level programs as type safety. This type system uses
a nominal system of regions, meaning that instead of having pointers to types, i.e., 𝜏∗, which
represents any memory address whose contents may be of type 𝜏 , our pointers are of the form
𝜂∗, where 𝜂 is a type name. Then, pointers represent memory addresses which are labeled by a
region tag obtained from 𝜂 using an allocation map (e.g., bottom part of Fig. 1). In turn, the heap is
constrained so that addresses tagged using 𝜂 must contain values of the type 𝜏 defining 𝜂. Thus,
region tags can be seen as a go-between a pointer and its pointed type.

Nominal systems of regions have already been used to verify imperative programs, e.g. [8, 15, 28,
35, 60, 67]. However, these systems are generally flat, with no embedding or combination between
memory regions. The main original feature of our type system is its ability to combine regions

by concatenation (record and array types), union (union and existential types), or sharing

of parameters (global properties), in addition to refining regions (using refinement and

intersection types). This rich composition of memory regions is the key to handling the low-level
programming patterns previously described, as we demonstrate in §2, without having to resort to ad-
hoc types, tailored for the specific application, and typing rules as is often done [60, 69]. Furthermore,
the combination between region composition and explicit naming brings up several interesting
properties. First, reasoning about points-to and aliasing properties (inclusion or disjunction of sets
of addresses) reduces to reasoning about the graph expressing how definitions of type names (𝜂)
derive from each other (see §4). Second, a store can change the type of the value contained in a
memory region, provided a checkable condition that all region tags are compatible with this change
(see §6). We call this a mild update semantic of store because it combines the benefits of strong
update (the ability to change the type of a memory cell) and of weak update (there is no need to
track aliases) semantics.

This type system could be used as a typed assembly language [3, 55, 57, 80] and carried as a proof
[59] that the program is type-safe. The proof may be produced by a type-preserving compiler for a
type-safe language and checked using syntactic proof rules. However, our goal is to prove low-level
programs to be type-safe automatically, without modification, even if the program was written in
an unsafe language like C or binary code. Specifically, we want to prove type-safe programs

written in type-unsafe languages like C, or programs transformed (using any tool) into

type-unsafe machine code, without any modification, given user-provided interface (type

definitions and function prototypes) using the types of our type system. The absence of
code modification is important as modifying the code or executable may significantly worsen its
performance [72], and requires significant efforts which hinders adoption.
Relying on particular syntactic constructs to achieve this goal, as done in methods based on

syntactic type checking [15, 35, 60, 68], would defeat this goal of verifying the code unmodified,
and would probably make verification of machine code impossible. To achieve our goal and reach a
sufficient level of precision, we make our type system and type checking algorithm semantic

using abstract interpretation [18] (i.e., we formalize our type system semantically [3, 22, 50, 74]),
and implement it by a standard flow-sensitive static analysis. This semantic type-checking design
brings us at least three benefits. (i) It allows us to (try to) type check programs despite intrinsic
undecidability, with good results in practice. (ii) It provides us with a systematic method [19]
to state and prove the soundness of our typing rules, which corresponds to the static analysis
operations. (iii) It gives us modular extensibility, as the type checking can be seamlessly combined
with other numerical, memory, or control-flow analyses to improve its precision, overcoming the
syntactic limitations of purely syntactic type-checking methods. For instance, we can extend our
analysis with points-to predicates [61] that provides additional relations between an address and
its contents, and simultaneously makes use of the aliasing information provided by our types. We

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:4 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

can also use in parallel abstract domains for proving control safety by control-flow reconstruction
[6, 38], which allows us to remove from our type system the control-flow properties.
This focus on automation led us to choose a structural type system which does not track all

the references to a memory region (we can forget about some references using the Weakening
structural property). Indeed, the absence of reference tracking reduces (i) the annotation burden by
avoiding ownership or borrowing annotations, like in Rust, and (2) the risk of failure to type-check
caused by imprecision in tracking all the references. However, this choice prevents us to verify

programs that perform arbitrary type-changing writes. This is less limiting than one may
think as (i) most writes are not type-changing in C programs and (ii) some type-changing writes
may be type-checked without sub-structural rules using an expressive structural type system like
TypedC (see example page 9). Still, the main limitation of our type-system is that it cannot

express nor prove temporal properties (like temporal memory safety or absence of data races) or
any property that requires a temporal invariant on the heap (like type-changing writes that
are not in the class of mild updates), because such properties require a substructural type system.
However, our analysis is based on abstract interpretation, a method which provides a framework for
composition of analyses. Therefore, by composing our analysis with some dealing with temporal
properties (e.g., shape analysis or Monat and Miné [53] method for computing modular effects of
threads), we would obtain an alternative to sub-structural type systems. For instance, our analysis is
combined with flow-sensitive abstractions of memory (e.g., the stack abstraction and the points-to
predicates of Nicole et al. [61]) that allows us to infer some temporal memory invariants.
To demonstrate the applicability of our approach, we implement it in Codex [1], an analyzer

for C and binary code. We exercise Codex on various low-level code of industrial quality (see §8),
e.g., the binary code of a message passing library in an industrial micro-kernel [23], or parts of
the runtime of the Lisp interpreter found in a compiled version of GNU Emacs [29], as well as
on examples used by tools verifying spatial memory safety [66]. Our benchmark exhibits very
complex sharing patterns, which would make approaches based on control of aliasing difficult
to use; their low-level nature prevents their verification by a syntactic, flat nominal type system
without rewriting and annotations. On the contrary, we show that our approach allows checking
semantically type safety of such code with a very high degree of automation.

To sum up, our work makes the following contributions: (1) We formalize (§3) a rich dependent
type system, including refinement types combined with records, pointers, arrays, type families,
quantified and finite union types. (2) We tackle the classic unsoundness problem of strong updates
over dependent types by proposing an original memory model (§5). (3) We propose a mild update
semantic for store operation (§6). (4) We embed our type calculus into an abstract domain (§7) to
obtain a sound semantic type checking. (5) We implemented our analysis for C and binary code
and we demonstrate the effectiveness of our method (§8) on a challenging benchmark.

2 Challenges for Low-Level Spatial Memory Safety
In a flat nominal systems of regions, featured in the Burstall-Bornat memory model [8, 9] as well
as on many type systems for C [15, 28, 35, 60, 67], objects of different types are viewed as entirely
separated (i.e., stored in disjoint regions of the heap). Such a system fails to verify spatial memory
safety of low-level code, because it cannot accurately describe invariants on the shape of the
memory used by such code. This section details three independent features that extend the flat
nominal system of regions: relation between regions, union of regions, and concatenation/nesting
of regions. We illustrate how our type system, by incorporating all these features, provides means
of expressing memory invariants that accurately describe the common low-level code patterns,
enabling their verification. Note that type definitions also translate to aliasing constraints, described
in §5. In the following examples, we suppose that integers and pointers have the same size, 4 bytes.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:5

1 def int := byte[4]
2 def char := byte
3
4 def message(mlen:int) :=
5 message(mlen)★ ×
6 char[mlen]★
7
8 def message_box := ∃ mlen:int.
9 {self:byte[4] | self==mlen} ×
10 message(mlen)★

1 struct message {
2 struct message *next;
3 char *buffer;
4 };
5
6 struct message_box {
7 int length;
8 struct message *first;
9 };

ℎ =

0x1000

4 0x2000

0x2004

0x3000 0x2010

0x2010 0x3000

0x2000 0x301C

0x301C

typ ◦m = message_box message(4) char[4] message(4) char[4]

Fig. 1. Specification (left) of a data structure (right) in a micro-kernel and a possible memory layout (bottom)

Example 1: the need for dependence relations between regions. The C code on the right of Fig. 1 is
extracted from the QDS [23] micro-kernel and simplified for readability; it encodes the message
boxes used in the inter-process communication. The implicit invariant of the type message_box is
that (a) the list starting at first is a circular non-empty list where (b) each element is a message
with an allocated buffer of size length (stored once in message_box).

The property (b) requires the ability to encode non-local invariants, i.e., properties that relate
memory regions that are not contiguous. For instance, the value of length field in message_box
fixes the size of the region pointed by the buffer field in all message regions reachable from the
first field. Non-local invariants are recognized as difficult to deal with in type-based memory
analyses: e.g., [15, 33] are limited to local invariants, CheckedC requires the relation between an
array length and the integer containing this length to follow specific syntactic patterns [28] to be
able to add dynamic checks, etc.

Our type system allows us to express such invariants by means of parameterized type names, as
shown in the specification given in the left part of Fig. 1. The specification includes the definition
(introduced by def keyword) of a type name message parameterized by the integer mlen; the body
of the definition of message is a record whose first field is a pointer to a message instantiated with
the same mlen parameter and a pointer to a block of mlen characters. The message type name is
used in the definition of the type name message_box, that employs existentially quantified types
to introduce a variable linking the value of the first component of the product with the parameter
of the second component. This is done using the refinement type “{self:byte[4] | self==mlen}”
that denotes 4-byte values satisfying the given predicate. (Notice that, because our type system
is nominal, int is not a synonym of byte[4]; nevertheless == is defined across both since they
share the same set of values). Therefore, the specification of message_box denotes all the regions
satisfying this internal invariant between their fields, which encodes the property (b).

The property (a) is obtained by associating to the 𝜂★ notation the meaning of not null pointer
since this property is important to prove spatial memory safety and mainly captured by the current
memory analyses. The possibly null pointers are derived types in our type system, using a union
with the null pointer type, as we will see in Fig. 3. Therefore, the specification in Fig. 1 (left) also
expresses that the list of messages is not empty, the pointer to the buffer in each message is not
null, and the list has a lasso shape1, an over-approximation of the circularity.
1Because of the finite number of memory addresses; however, an elaborate type definition may express the circular shape.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:6 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

1 def tag(y:int) := {self:byte[4] | self==y};
2
3 def buffer := ∃ sz:int.
4 tag(12) ×
5 {self:byte[4] | self==sz} ×
6 Lisp_Object ×
7 char[sz]★
8
9 def vector := ∃ len:int.
10 tag(0) ×
11 {self:byte[4] | self==len} ×
12 Lisp_Object[len]
13
14 def vectorlike_p :=
15 buffer★ ∪ vector★

1 struct buffer {
2 int header;
3 int size;
4 Lisp_Object name;
5 char *contents;
6 };
7
8 struct vector {
9 int header;
10 int size;
11 Lisp_Object array[];
12 };
13
14 typedef union {
15 struct buffer *buf;
16 struct vector *vec;
17 } vectorlike_p;

ℎ = 12 4 0x... 0x1014 0 2 0x... 0x...

0x1000 0x1008 0x1010 0x1018 0x1020 0x1028

typ ◦m = buffer char[4] vector

Fig. 2. Specification (left) for the data structure (right) used by the Emacs-Lisp interpreter for vector-like

values and a possible memory layout (bottom)

To understand the meaning of these type specifications, we provide at the bottom of Fig. 1 an
example for the memory layout when the values of these types are allocated in memory. The top
array, labeled by ℎ, represents the heap, mapping addresses to bit-vector values. The bottom array,
labeled by typ ◦m, is based on what we call an allocation map m, mapping the same addresses as ℎ to
the region tags specifying the values that the memory cells at these addresses should contain [76].
For the sake of space, we use type names instead of region tags (region tags are trees in our memory
model, see §4.1), which is why we compose m with the typ function.
Example 2: the need for unions between regions. Fig. 2 (right) presents the C encoding of a core
component of the Emacs-Lisp interpreter [29] simplified for the sake of readability. It defines
“vector-like” objects (including real vectors, buffers, character sets, etc.) by employing a classical
pattern to encode variant types in low-level programming: discriminated unions.2 The union
collects pointers to objects of different types, all of which share a common information (here the
header field) that uses an integer value to discriminate between the different variants. For instance,
a pointer of type vectorlike_p points to a vector (an array of Lisp values) if header is 0 or
to a buffer (an array of characters) if header is 12. Like in the previous example, the buffer’s
content is stored in a different memory region whose size is stored inside the size field. However,
the vector’s content is stored inside the vector value itself using the C feature known as flexible
array member. In the specification at left of Fig. 2, this concurs with the fact that char[sz]★ is
a pointer type, unlike Lisp_Object[len]. Union types are used to represent non-discriminated
unions, e.g., the values of type vectorlike_p may be either values of types buffer★ or vector★.
Finally, the existential types that we already saw actually represent an infinite union of regions, e.g.,
the vector type is the union of all the regions for every value of len.
Example 3: the need for concatenation and nesting of regions. The third example is extracted from
the implementation of red black trees (RBT) in the Linux kernel [5] and it is presented in Fig. 3.
It defines a C type rb_node as a generic container type carrying only RBT shape and color
information. In C, this generic RBT is instantiated in mytype by embedding rb_node, along with

2Another way to encode variant types is using bit-stealing, as illustrated in the next example.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:7

1 def rbcolor := {self:byte[4] | (self==RED ∨ self==BLACK)}
2
3 def myrb_node_p :=
4 {self:(mytype★ +4) | self%4==0}
5 ∪ {self:byte[4] | self==0}
6
7 def myrb_node :=
8 myrb_node_color × myrb_node_p × myrb_node_p
9
10 def myrb_node_color :=
11 ∃𝛼 :myrb_node_p,𝛾:rbcolor. {self:byte[4] | self==𝛼|𝛾}
12
13 def mytype := char[16]★ × myrb_node

1 #define RED 0
2 #define BLACK 1
3
4 struct rb_node {
5 int rb_parent_color;
6 struct rb_node *rb_right;
7 struct rb_node *rb_left;
8 };
9
10 struct mytype {
11 char *key;
12 struct rb_node node;
13 };

ℎ =

0x1000 0x1004

0x1014 0x2004 0x... 0x...

0x1014

...

0x2000 0x2004

0x401F 0x1005 0x... 0x...

typ ◦m = mytype char[16] ... myrb_node

Fig. 3. Specification (left) of the C types for red black trees used in the Linux kernel and their usage (right)

with a possible memory layout (at bottom)

the key (a pointer to a fixed-size string). We do the same in our specification, by defining mytype
as a concatenation (using product type) of the key with rb_node. Note that the concatenation
may also be described using array types, like in char[16]. The nesting of a region inside another
implies that pointers to both regions may alias following relations described in §5.
The type rb_node uses bit-stealing to encode the color of a node in the last two bits of the

pointer to the parent. We specify this property (left of Fig. 3) with the type name myrb_node_color
using (i) a refinement type rbcolor encoding the type of two colors and (ii) an existential type
myrb_node_color introducing the variables denoting the values of the pointer (𝛼) and of the color
(𝛾) combined to constrain the value of the first field of myrb_node.

In the specification, the generic C type rb_node is instantiated for the usage in mytype by
defining myrb_node. This has two main consequences. First, the myrb_node type name precisely
identifies the set of addresses storing rb_node values inside a mytype region. Second, the specifi-
cation of pointers to rb_node inside mytype requires a special treatment. Describing the rb_left
field of myrb_node as a possibly null myrb_node pointer is a sound description of the memory,
but not precise enough: search algorithms depend on the fact that elements in the tree are interior
pointers to mytype to recover the key from a pointer to a node, by subtracting a fixed offset (i.e.
4, the size of the key). We can specify this in the definition of myrb_node_p by adding 4 to a not
null mytype pointer. Furthermore, we specify the alignment of the pointer necessary to do
bit-stealing. Finally, these pointers may be null, and we express this using a union with a singleton
type of 4 bytes for value 0. For instance, in the memory layout given at the bottom of Fig. 3, the
value 0x1005 stored at address 0x2004 has type myrb_node_color, which describes a pointer to
a mytype address 0x1000 shifted by 4 (0x1004), and the last bit is set because the node is BLACK.
Example 4: type changing writes with mild update. The C code at the right of Fig. 4 defines a binary
tree where each node maintains a reference to its parent (root’s parent is null). The three functions
are memory safe because they rely on the following memory invariant (i) they are called with non
null references to nodes, (ii) a node is either a leaf node (i.e., where both children are null) or an
interior node (inode) where both children are non null (i.e., of type node★), and (iii) the parent
node, if it exists, is an interior node (inode?). These invariants are specified to the left of Fig. 4; for
sake of concision, we use the notations inode? and nullptr for the type expressions at right of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:8 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

≜, i.e., possibly null pointer to inode and null pointer respectively. This specification is enough
to type-check and thus prove memory safety of the next_right function because if its parent is
not null, it is an interior node with a non null right child. Type-checking extend and to_leaf
requires to deal with type-changing updates.

For instance, a call to extend updates both children of the first argument n to non null references,
thus changing the type of n from node★ to inode★. A weak update semantics which requires that
a write in a memory region does not change the region’s type, does not suffice to type check this
update: we need to change the case of the union and to reflect this in the type. A strong update
semantics could type check the program, but it would require to check that 𝑛 is the only pointer
to the updated memory region or that any aliasing pointer would also have its type changed
to inode★. Checking such conditions is challenging when nodes can be arbitrarily shared, as it
requires additional annotations about the number of references to an object (e.g., ownership) or a
complex shape analysis.

One of our contributions is identifying a third way to allow safe updates changing the case of a
union type without changing the types of existing values or requiring to track all the pointers to
the union. We call this new semantic a mild update. Basically, type-changing writes are allowed
provided that existing pointers will preserve theirs type. In the case of extend, all values of type
node★ still have type node★ after the call, and all values of type inode★ still have type inode★:
all typing judgements about pointers are preserved. The set of values of type inode★ evolves
though: there are new values of type inode★, as the variable n holds now a inode★ (which
makes safe the assignments on line 10). Indeed, mild update requires the set of values in pointer
types to grow. Conversely, the to_leaf function transforms an interior node to a leaf node: the
assignments on line 13 remove the address in n from the set of values of type inode★. Intuitively,
this code is not type safe because there may exist some pointer of type inode★ that would alias
with n. Consequently, the invariant that this pointer points to an inode is no longer true after
the function’s call, so this function does not type-check. The difference between to_leaf and
extend is that pointers to interior nodes are possible (because we have a type name, inode, for
that) while pointers to leaf nodes are not (i.e., it is an anonymous type expression in node). Thus,
weak update permits to change a node from leaf to interior, but forbids to change from interior
to leaf node. If we wanted to_leaf to type check, we could remove the inode name and inline
its type expression in the definition of node, then convert pointers to inode to pointers to node.
This will allow arbitrary changes between the cases of the node type. However, the new invariant
is no longer strong enough to type-check next_right, and the analysis will raise an alarm. A
pragmatic solution to this problem would be to add an assertion that n->parent->right is non
null. This example illustrates the main limitation of our work: to prove both next_right and
to_leaf without changing the code, we would need a more complex substructural type system or
an advanced shape analysis, capable to deal with strong updates.

3 Physical Dependent Types
We start presenting the TypedC type system, by the definition of the set of type expressions on
which it is built. The semantics of TypedC is presented in §4, the aliasing rules that it entails are
in §5, and the core typing judgments are in §6. Throughout these sections we will use Fig. 5 as a
running example; it contains a complete specification for two functions acting on a binary tree
holding integer data. Each tree’s node is either an interior node with two children, or a leaf node
with none. Each node except the root has a pointer to its parent, which is an interior node.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:9

1 nullptr ≜ {p:byte[W] | p==O}

2 inode? ≜ inode★ ∪ nullptr
3 def int := byte[4]
4 def inode := inode?
5 × int
6 × node★
7 × node★
8 def node := (inode?
9 × int
10 × nullptr
11 × nullptr)
12 ∪ inode
13 inode★ extend(node★, node★, node★);
14 node★ to_leaf(node★);
15 node★ next_right(node★);

1 typedef struct node_s node;
2 struct node_s {
3 node *parent;
4 int val;
5 node *right;
6 node *left;
7 };
8 node* extend(node *n, node *l, node *r) {
9 n->left = l; n->right = r;
10 l->parent = r->parent = n; return n;
11 }
12 node* to_leaf(node *n) {
13 n->left = n->right = 0; return n;
14 }
15 node* next_right(node *n) {
16 return (n->parent!=0)?n->parent->right:n;
17 }

Fig. 4. Specification (left) of the binary tree invariants used in the C code at right.

Table 1. Physical dependent types of TypedC

symbolic variables: 𝛼, self ∈ � integer constants: ℓ ∈ Z, bit-vector constants: 𝑘 ∈ V
type identifiers: n ∈ N operators: ⋄ (bit-vector, comparison and logical)

Δ ∋ def n(𝛼1 : 𝜏1, . . . , 𝛼ℓ : 𝜏ℓ) := 𝜏 type name definition with fv(𝜏) ⊆ {𝛼1, . . . , 𝛼ℓ }

Type names 𝜂 ::= byte | n(𝑒1, . . . , 𝑒ℓ)
Types T ∋ 𝜏 ::= 𝜂 | 𝜂★ + 𝑒 | {self : 𝜏 | 𝑒} | 𝜏1 × 𝜏2 | 𝜏[𝑒] | 𝜏1 ∪ 𝜏2 | ∃𝛼 : 𝜏1 . 𝜏2 | 𝜏1/|𝜏2
Terms E ∋ 𝑒 ::= 𝑘 | 𝛼 | 𝑒1 ⋄ 𝑒2 | 𝑒1 :: 𝑒2 | 𝑒 [𝑘1 ..𝑘2]

3.1 Syntax and Intuitive Semantics
Table 1 summarises the syntax of type expressions in TypedC. The set of free symbolic variables in a
type expression or term is denoted by fv(·). A closed type/term has no free variables. A substitution
of a free variable 𝛼 by 𝑘 in some type or term 𝑡 is denoted by 𝑡 [𝛼 ← 𝑘].
The type identifier byte is the predefined type for the smallest addressable memory piece in

TypedC. Additional type names are introduced using a finite set of type name definitions Δ: each
definition associates a type expression to a type identifier n and a (possibly empty) list of parameters.
Type names 𝜂 are either the predefined type identifier byte or the application of a type identifier
n to a list of terms corresponding in size and type to the list of parameters in the definition of n.
We denote by Δ(n(𝑒1, . . . , 𝑒ℓ)) the type expression obtained by substituting the parameters in the
definition of n by the values of terms 𝑒1, . . . , 𝑒ℓ respectively. We omit parentheses in type names
when the list of parameters is empty. For instance, the definition of type name tag in Fig. 2 has one
parameter, and it is instantiated in type buffer to obtain the type name tag(12); an example of
type name without parameters is rbcolor in Fig. 3. Additional constraints on the type definitions
and their instantiation are exposed in §3.2. The set Δ is an input of our analysis, provided by

the user after translation from a C-like surface syntax, which predefines standard C types like
int, long, etc. Fig. 6 contains a complete example of a user-provided specification for Δ.

Pointer type expressions are built on type names. The simplest form is “𝜂★”, which denotes the set
of start addresses for memory regions whose tags include 𝜂 in the memory layout (i.e., allocation
map, see §4.1). To address a byte at an offset 𝑒 inside a memory region labelled by 𝜂, we use type
expression “𝜂★ + 𝑒”. The null address is not a value of 𝜂★. However, possibly null pointers of type
𝜂, whose surface syntax is 𝜂?, are encoded using union and refined type expressions (see Fig. 3 and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:10 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 2. Orderings ≺Δ and ≺∃Δ between type expressions.

Δ(𝜂) ≺Δ 𝜂

byte[W] ≺Δ 𝜂★ + 𝑒
𝜏 ≺Δ {𝑥 : 𝜏 | 𝑒}

∀𝑖 ∈ {1, 2} : 𝜏𝑖 ≺Δ 𝜏1 × 𝜏2
𝜏 ≺Δ 𝜏[𝑒]

∀𝑖 ∈ {1, 2} : 𝜏𝑖 ≺Δ 𝜏1 ∪ 𝜏2

𝜏1 ≺Δ 𝜏1/|𝜏2
∀𝑘 ∈ V : 𝜏2 [𝛼 ← 𝑘] ≺Δ ∃𝛼 : 𝜏1 . 𝜏2

𝜏1 ≺∃Δ ∃𝛼 : 𝜏1 . 𝜏2

below). The values of pointer type occupyW bytes, whereW is a constant fixed by the ABI. Like in
§2, we supposeW = 4 which also equals size of int. Notice that there are architecture-dependent
aspects of the translation from the C-like surface language of specification (e.g., endianness) which
come from the ABI parameter used by the analysis.
A refinement type expression “{self : 𝜏 | 𝑒}” specifies the set of values 𝑣 of type 𝜏 such that

the term 𝑒 evaluates to true (i.e., ≠ 0) when the symbolic variable self is replaced by 𝑣 . For
instance, rbcolor in Fig. 3 is a refined type. Notice that 𝑒 need not to refer to the self variable,
e.g., {self : byte | 1 == 0} denotes a type of byte’s size with an empty set of values.

Product type expressions “𝜏1×𝜏2” denote the bit-vector concatenation of a value in 𝜏1 with a value
in 𝜏2. They are used to specify record types in C, e.g., the myrb_node type in Fig. 3. We use the
shorthand 𝜏𝑛 for a product of 𝑛 types 𝜏 . The memory layout induced by the alignment constraints
(i.e., padding) is made explicit using product types. For example a record type with two fields of
type byte and int is specified by byte × byte[3] × int if int are 4-bytes.

Array type expressions “𝜏[𝑒]” generalize the product to the concatenation of 𝑒 values of type 𝜏
(𝑒 may be symbolic). Arrays with symbolic sizes are used to specify flexible array members like
in the vector type on Fig. 2. To keep notations simple, we denote by char[sz]★ (e.g., in type
buffer from Fig. 2) a pointer to an array of sz characters, instead of arr_char(sz)★ where
def arr_char(n:int):=char[sz].

Union type expressions “𝜏1 ∪ 𝜏2” specify the union of sets of values of 𝜏1 and 𝜏2. For example, the
possibly null pointer notation 𝜂? is a shorthand for 𝜂 ★∪ {self : byte[W] | self == 0}, which
combines pointer, refinement, product and union type expressions. Notice that our union type is
different from the sum type used in classic dependent types because it is not discriminated; e.g.,
union between types that share values is allowed.

Existential type expressions (or quantified union) “∃𝛼 : 𝜏1. 𝜏2” generalize finite union types to an
unbounded union3. Such types include values 𝑣 of type 𝜏2 [𝛼 ← 𝑣𝛼], i.e., 𝜏2 where 𝑣𝛼 , a value of
type 𝜏1, replaces 𝛼 . Without loss of generality, we suppose that all variables bound by existential
quantifiers have unique names.

Intersection type expressions “𝜏1/|𝜏2” specify a restriction of values of 𝜏1 to the values of 𝜏2, with
𝜏1 a union type including 𝜏2 as member; this expression is mainly used by the analysis.

Terms 𝑒 are built on constants, symbolic variables in an unbounded set �, arithmetic operations,
comparisons, logical operations (with non-null terms interpreted as true, and false otherwise), and
bit-vector operations like concatenation “𝑒1 :: 𝑒2” and extraction “𝑒 [𝑘1 ..𝑘2]” of bits of 𝑒’s value
between positions 𝑘1 (included) and 𝑘2 (excluded). Actually, terms may belong to any arithmetic
theory with a sound decision procedure for entailment. In our analysis, we use the linear integer
arithmetic with modulo constraints or bit-vector constraints, which is the logic theory underlying
our numerical abstract domain (see §8).

3.2 Well-Formed Type Definitions
Intuitively, def 𝜂 := 𝜏 defines new kinds of contiguous memory regions “of type 𝜂”. Specifically, a
definition (i) constrains the possible values that can be stored in these regions (“regions of type 𝜂
3Although similar to existential types in System F, our existential types quantify a value variable and not a type variable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:11

contain values of type 𝜏”), and (ii) it constrains the relations between the different regions (“regions
of type 𝜂 are a subset of the regions of type 𝜏”). The latter interpretation hints at a well-founded
ordering between the tags of regions (provided in §5); this ordering derives from an ordering
between type expressions, denoted ≺Δ, which is formally defined in Table 2. The relation ≺Δ is a
strict preorder over type expressions that mostly corresponds to the sub-term relation. We explain
in the following the differences with the sub-term relation. The rule Δ(𝜂) ≺Δ 𝜂 relates a type name
with the expression given by its definition. Note that this rule implies that 𝜂 and Δ(𝜂) are not
equivalent, which makes our type system nominal. The rule byte[W] ≺Δ 𝜂★ + 𝑒 (and the absence
of a rule 𝜂 ≺Δ 𝜂★ + 𝑒) is another difference with the sub-term relation. Indeed, a pointer type
𝜂★ + 𝑒 does not “contain” values of type 𝜂, but it is a new scalar type holding an address. This rule
is related to the C notion of forward reference to type names in pointer types. The absence of a
rule 𝜏2 ≺Δ 𝜏1/|𝜏2 also breaks the sub-term relation and comes from the asymmetric nature of our
intersection. However, we require that 𝜏2 is related by the transitive closure of ≺Δ to 𝜏1/|𝜏2:

Reqirement 1 (Well-formed intersection types). Any type expression𝜏1/|𝜏2 satisfies𝜏2 ≺∗Δ 𝜏1,
i.e., type 𝜏2 is either 𝜏1 (degenerate case) or a type used in the definition of 𝜏1.

The rule ∀𝑘 ∈ V : 𝜏2 [𝛼 ← 𝑘] ≺Δ ∃𝛼 : 𝜏1 . 𝜏2 defines a sub-term ordering modulo the instantiation
of the existentially quantified variable (whose possible values is over-approximated by V). We don’t
want a rule 𝜏1 ≺Δ ∃𝛼 : 𝜏1. 𝜏2 as the type ∃𝛼 : 𝜏1. 𝜏2 may not contain values of the type 𝜏1. However,
we do want to prevent circular type definitions (except through a pointer type, like in C). So, we
extend ≺Δ with the relation ≺∃Δ defined by 𝜏1 ≺∃Δ ∃𝛼 : 𝜏1 . 𝜏2 and we ask the following:

Reqirement 2 (Well-formed Δ). The relation ≺Δ ∪ ≺∃Δ induced by Δ is well-founded.

The above requirement implies in particular the following property:

Proposition 1. The relation ≺Δ is well-founded, i.e., if 𝜏1 ≺Δ 𝜏2 is understood as the successor
relation 𝜏1 → 𝜏2 in a graph, then ≺Δ induces a DAG over type expressions.

An example of such a graph is given in Fig. 5. The DAG induced by ≺Δ (and its evolution in §5
that includes offsets) ensures type-based reasoning over aliasing [24] and separation. In particular,
two pointers of type 𝜂1★+ 𝑒1 and 𝜂2★+ 𝑒2 such that neither 𝜂1 ≺∗Δ 𝜂2 nor 𝜂2 ≺∗Δ 𝜂1 do not alias. For
instance, in Fig. 2, a pointer of type buffer* cannot be used to write into a region of type vector.

4 Semantics of Physical Dependent Types
The interpretation of type expressions used by our type system depends on the memory model
we consider. Usually, a memory model directly maps an allocated address to its type; thus, a
pointer type 𝜏∗ represents all the start addresses of regions containing a value of type 𝜏 . Our type
system is nominal: pointer types 𝜂★ can refer only to a type name 𝜂. Type names are used in our
memory model to tag memory regions. This restriction on pointer types allows us in particular
(i) to distinguish pointers to different regions even if these regions hold values of the same types
(i.e., it enables a more precise alias analysis), and (ii) to change the value stored in a region without
changing the type of pointers to this region, thereby allowing mild updates. More precisely, type
names correspond to a set of region tags, where region tags identify memory regions and represent
an invariant on the contents of a memory region (§4.2). Possible aliases between pointers are
determined from the relations between region tags (§5). A region may switch between different
region tags if some conditions are met (§6). We begin our exposition by presenting the memory
model and the syntax of region tags.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:12 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

nullptr≜{p:byte[W] | p==O}
inode?≜inode★ ∪ nullptr
def int := byte[4]
def inode:= inode?

× int
× node★
× node★

def node := (inode?
× int
× nullptr
× nullptr)

∪ inode
node★ new_leaf(int);
inode★ extend(node★, node★,

node★);

node(
inode?×int×nullptr×nullptr

)
∪ inode

inode?×int
×nullptr×nullptr inode

inode?×int
×node★×node★

inode?≜
inode★∪nullptr

int

nullptr≜
{p:byte[W]|p==0} node★inode★

byte[W] byte[4]

byte

path(𝜌1
node, 10)
=

node,10(
inode?×int×
nullptr×nullptr

)
∪ inode,10
inode?×int×
nullptr×nullptr,10

nullptr,2

{p:byte[W]|p==0},2

byte[W],2

byte,0

path(𝜌2
node, 10)
=

node,10(
inode?×int×
nullptr×nullptr

)
∪ inode,10

inode,10
inode?×int×
node★×node★,10

node★,2

byte[W],2

byte,0

𝜌1
node ≜ node(

inode?×int×nullptr×nullptr
)
∪ inode

inode?×int×nullptr×nullptr

inode★∪nullptr

inode★ int nullptr nullptr

byte[W]

byte×W... byte

byte[4]

byte ×4... byte

byte[W]

byte×W... byte

byte[W]

byte×W... byte

𝜌2
node ≜ node(

inode?×int×nullptr×nullptr
)
∪ inode

inode

inode?×int×node★×node★

inode★∪nullptr

nullptr int node★ node★

byte[W]

byte×W... byte

byte[4]

byte ×4... byte

byte[W]

byte×W... byte

byte[W]

byte×W... byte

Fig. 5. Full specification (top left), DAG representation of ≺Δ (top middle), two region tags for node out of 4

possible (bottom), and two paths (top right) in these region tags. Circled nodes are those whose type is a type

name. The notations nullptr and inode? are not type names, but textually expanded notations used only

for the sake of concision.

4.1 Memory Model
We first introduce some notations. We denote by ⟨⟩ the empty sequence, ⟨𝜎1, . . . , 𝜎𝑛⟩ is a sequence
of 𝑛 elements, ®𝜎 is a sequence of | ®𝜎 | elements with ®𝜎 [𝑖] the 𝑖th element of ®𝜎 . Concatenation ®𝜎 · ®𝜎 ′
and the last element last(®𝜎) are defined as usual. If 𝜎𝑖 appears in ®𝜎 , we denote it by 𝜎𝑖 ∈ ®𝜎 . The
notation [ℓ ..𝑢] denotes the set {𝑖 | ℓ ≤ 𝑖 < 𝑢} ⊂ Z and V𝑛 is the set of 𝑛-bytes bit-vectors. dom(𝑓)
and img(𝑓) respectively represents the domain and image of a function.

We consider a concrete memory model, formally defined in Table 3, where the set of addresses A
is a subset of VW . At each allocated address in the heap is stored a value in V1, i.e., values of one
byte. Because our analysis is based on a type abstraction of the memory, the concrete memory model
also requires an allocation map m, which associates the first address in a range of 𝑛 contiguous
addresses, or region, to a type-based abstraction of the value stored. However, the abstraction used
is not simply a type expression, but an ordered tree of type expressions which represents a possible
memory layout for a type, called a region tag 𝜌 ∈ R. For instance the two region tags at the bottom
of Fig. 5 represent two of the four possible layouts for node (the missing cases are when all the
pointers are null, and when all are non-null).

In Table 3, region tags are defined as trees whose leaves are byte; the number of those leaves (i.e.,
width of the tree), is called region tag’s size. However, the structure of a region tag 𝜌 in well-typed
programs is constrained by the fact that 𝜌 is one of the possible coherent memory layout for a type
𝜏 ; this constraint on well-formed region tags is formally stated as 𝜌 ∈ [[𝜏]]m with [[·]]m defined in
§4.2. Intuitively, a well-formed region tag is a tree whose root (computed by function typ) is a type

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:13

Table 3. Memory model for TypedC.

Values 𝑣 ∈ V Addresses 𝑎 ∈ A, A ⊂
(
VW \ {0}

)
⊂ V

Allocation maps M ∋ m : A⇀ R Region tags R ∋ 𝜌 ::= byte | 𝜏/®𝜌 for 𝜏 . byte, 𝜏 closed
Byte allocation maps M ∋ m : A⇀ R Byte tags R ∋ (𝜌, 𝑘) s.t. 𝜌 ∈ R, 0 ≤ 𝑘 < size(𝜌)

Type-offsets P ≜ T ×N Path in region tag 𝜋 ∈ P+

size(𝜌) ≜
{

1 if 𝜌 ≡ byte

size(®𝜌) if 𝜌 ≡ 𝜏/®𝜌

typ(𝜌) ≜
{

byte if 𝜌 ≡ byte
𝜏 if 𝜌 ≡ 𝜏/®𝜌′

size(⟨𝜌0⟩ · ®𝜌) ≜ size(𝜌0) + size(®𝜌)
m(𝑎) ≜ (m(𝑎0), 𝑎 − 𝑎0)

if 𝑎0 ∈ dom(m) and
0 ≤ 𝑎 − 𝑎0 < size(m(𝑎0))

name; all the children 𝜏 of a node 𝜏 ′ in the tree are such that 𝜏 ′ ≺Δ 𝜏 ; each node has a single child,
except record types 𝜏1 × . . . × 𝜏𝑛 (that have 𝑛 children), array types 𝜏[𝑒] (“value of 𝑒” children), and
byte (which are the leaves of the tree). In Fig. 5, both 𝜌1node and 𝜌2node are well-formed region tags.

Region tags relate bytes at different offsets: e.g., in Fig. 5, pointers to the children nodes are either
both null or both non-null. We need to perform byte-level reasoning like this. To represent the
𝑘th byte in a memory layout 𝜌 , we use a byte tag defined by the pair (𝜌, 𝑘). For instance, the start
address of the second field of type node is denoted by (𝜌1node, 4) in Fig. 5 (forW = 4). From a given
allocation map m, we define (in Table 3) the corresponding byte allocation map m as a mapping
from an address 𝑎 to its byte tag built from the tag m(𝑎0) of the region starting at 𝑎0 such that 𝑎−𝑎0
is positive and less than the size of the region (i.e., size(m(𝑎0))). The definition of allocation maps
does not ensure the separation between regions. Indeed, two addresses 𝑎 and 𝑎′ such that 𝑎 < 𝑎′

may be tagged by m such that the tag associated to 𝑎 has a size (number of leaves) greater than
𝑎′ − 𝑎, which means that the regions starting at 𝑎 and 𝑎′ are overlapping. Therefore, we require in
the following sections4 that the allocation maps satisfy the following constraints ensuring region
separation (in addition to well-formedness of region tags):

Reqirement 3 (Well-formed allocation map). An allocation map m is well-formed iff ∀𝜌 ∈
img(m) the root of 𝜌 , i.e., typ(𝜌), is a type name 𝜂; 𝜌 is well-formed, i.e., 𝜌 ∈ [[𝜂]]m; and ∀𝑎1, 𝑎2 ∈
dom(m) the regionsm(𝑎1) andm(𝑎2) are separated, i.e., 𝑎1+size(m(𝑎1)) ≤ 𝑎2 ∨𝑎2+size(m(𝑎2)) ≤ 𝑎1.

4.2 Denotations of Type Expressions
For a given allocation map m, closed type expressions 𝜏 have a double interpretation in TypedC:
as sets of values L𝜏 Mm and as sets of region tags [[𝜏]]m. These denotations are defined in Table 4
and the interpretation of a closed term 𝑒 into a bit-vector denoted eval (𝑒) is done according to the
semantics of C operators. Most of these definitions are obvious, we present the most interesting
ones. Intuitively, the set of values of a pointer type L𝜂★ + 𝑒 Mm contains the addresses 𝑎 where 𝑎
belongs to a region starting at address 𝑎0, the region tag m(𝑎0) contains a node 𝜂 at some offset 𝑜 ,
and the offset of 𝑎 matches 𝑒 (i.e. 𝑎 − 𝑎0 = 𝑜 + eval (𝑒)). For instance, in Fig. 5, if m(0x1000) = 𝜌2node,
then 0x1006 ∈ L int★+2 Mm because int appears at offset 4 in 𝜌2node. Formally, an address 𝑎 belongs
to L𝜂★ + 𝑘 Mm if the pair (𝜂, 𝑘) appears in path(m(𝑎)) defined as follows:

4In the following subsection of this section, allocation maps are arbitrary to avoid the definition of [[·]]m to be circular.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:14 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 4. Value denotation (left) and region tag denotation (right) of closed type expressions

L · Mm :T→ P(V) [[·]]m :T→ P(R)
L byte Mm ≜ V1 [[byte]]m ≜ {byte}

L n(𝑒1, . . .) Mm ≜ LΔ(n(𝑒1, . . .)) Mm [[n(𝑒1, . . .)]]m ≜ {n(𝑒1, . . .)/𝜌 | 𝜌 ∈ [[Δ(n(𝑒1, . . .))]]m}
L𝜂★ + 𝑒 Mm ≜ {𝑎 ∈ A | (𝜂, eval (𝑒)) ∈ path(m(𝑎))} [[𝜂★ + 𝑒]]m ≜ {(𝜂★ + 𝑒)/byte[W]}

L {𝑥 : 𝜏 | 𝑒} Mm ≜ {𝑣 ∈ L𝜏 Mm | eval (𝑒 [𝑥 ← 𝑣]) ≠ 0} [[{𝑥 : 𝜏 | 𝑒}]]m ≜ {({𝑥 : 𝜏 | 𝑒})/𝜌 | 𝜌 ∈ [[𝜏]]m}
L𝜏1 × 𝜏2 Mm ≜ {𝑣1 :: 𝑣2 | 𝑣𝑖 ∈ L𝜏𝑖 Mm} [[𝜏1 × 𝜏2]]m ≜ {(𝜏1 × 𝜏2)/⟨𝜌1⟩ · ⟨𝜌2⟩] | 𝜌𝑖 ∈ [[𝜏𝑖]]m}

L𝜏[𝑒] Mm ≜ {𝑣0 :: . . . :: 𝑣𝑠−1 |
𝑠 = eval (𝑒), ∀𝑖 ∈ [0..𝑠], 𝑣𝑖 ∈ L𝜏 Mm}

[[𝜏[𝑒]]]m ≜ {(𝜏[𝑒])/⟨𝜌0⟩ · . . . · ⟨𝜌𝑠−1⟩] |
𝑠 = eval (𝑒), ∀𝑖 ∈ [0..𝑠] . 𝜌𝑖 ∈ [[𝜏]]m}

L𝜏1 ∪ 𝜏2 Mm ≜ L𝜏1 Mm ∪ L𝜏2 Mm [[𝜏1 ∪ 𝜏2]]m ≜ {(𝜏1 ∪ 𝜏2)/𝜌 | 𝜌 ∈ [[𝜏1]]m ∪ [[𝜏2]]m}

L∃𝛼 : 𝜏1 . 𝜏2 Mm ≜
⋃

𝑣1∈L𝜏1 Mm

L𝜏2 [𝛼 ← 𝑣1] Mm [[∃𝛼 : 𝜏1 . 𝜏2]]m ≜ {(∃𝛼 : 𝜏1 . 𝜏2)/𝜌 |
∃𝑣 ∈ L𝜏1 Mm . 𝜌 ∈ [[𝜏2 [𝛼 ← 𝑣]]]m}

L𝜏1/|𝜏2 Mm ≜ L𝜏1 Mm ∩ L𝜏2 Mm [[𝜏1/|𝜏2]]m ≜ {(𝜏1/|𝜏2)/𝜌1 | 𝜌1 ∈ [[𝜏1]]m ∧ 𝜏2 ∈ 𝜌1}

Definition 4.1 (Paths in region tags). Let 𝜌 be a well-formed tag and 𝑘 ∈ [0.. size(𝜌)] a constant.
The path inside 𝜌 for offset 𝑘 is computed by path : R→ P+ defined by:

path(byte, 0) ≜ ⟨(byte, 0)⟩
path(𝜏/(®𝜌1 · ⟨𝜌⟩ · ®𝜌2), 𝑘) ≜ ⟨(𝜏, 𝑘)⟩ · path(𝜌, 𝑘 − size(®𝜌1)) if size(®𝜌1) ≤ 𝑘 < size(®𝜌1 · ⟨𝜌⟩)

The top-right part of Fig. 5 gives two paths for the byte tags (𝜌1node, 10) and (𝜌2node, 10) respectively.
The above definition and the one of L𝜂★+𝑘 Mm (Table 4) implies that this last set contains all addresses
tagged by m with a (𝜌, 𝑘 ′) such that (𝜂, 𝑘) is somewhere in the path of (𝜌, 𝑘 ′) (and not only at the
start of this path). If we continue our previous example where m(0x1010) = (𝜌2node, 10), we can see
that the address 0x1010 belongs to all of L node★ + 10 Mm, L inode★ + 10 Mm, and L byte★ + 0 Mm.
The region tags of existential types are obtained by instantiating the quantified variable with

each value in its definition type. For an array type 𝜏[𝑒], a region tag is built from any combination
of region tags of its elements. The tags of intersection types 𝜏1/|𝜏2 recall the Reqirement 1 for
well-formed intersection types stating that 𝜏2 is part of definition of 𝜏1.

The values of a type L𝜏 Mm are not necessarily bit-vectors of the same size. For instance, consider
an array type where elements have a size fixed by an existentially quantified variable like in the
vector type in example from Fig. 2. However, C forbids type definitions where flexible size types
appear as a left member of a product and, by extension, as a type of elements in an array type.
Therefore, the following hypothesis on type expressions will be frequent:

Definition 4.2 (Constant size type). A type 𝜏 has a constant size if there exists 𝑠 ∈ N such that for
any m well-formed, ∀𝜌 ∈ [[𝜏]]m : size(𝜌) = 𝑠 . If 𝜏 has a constant size, we denote it by size(𝜏).

Definition 4.3 (Constant prefix hypothesis). The set of types T satisfies the constant prefix hy-
pothesis iff all its elements 𝜏 are such that:
• If 𝜏 is a product type 𝜏1 × 𝜏2, then 𝜏1 has a constant size.
• If 𝜏 is an array type 𝜏 ′[𝑒], then 𝜏 ′ has a constant size.

This hypothesis allows simplifying some abstract operations in the analyzer, as we will now see.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:15

Table 5. Derivation relation ≺Pm between closed type-offsets for a fixedm (% is bit-vectors’ modulo operation)

toDef
𝜂 ≠ byte

(Δ(𝜂), 𝑘) ≺Pm (𝜂, 𝑘)

toPtr

(byteW , 𝑘) ≺Pm (𝜂★ + 𝑒, 𝑘)

toRef

(𝜏, 𝑘) ≺Pm ({self : 𝜏 | 𝑒} , 𝑘)

toUnion1

(𝜏1, 𝑘) ≺Pm (𝜏1 ∪ 𝜏2, 𝑘)

toUnion2

(𝜏2, 𝑘) ≺Pm (𝜏1 ∪ 𝜏2, 𝑘)

toInter

(𝜏1, 𝑘) ≺Pm (𝜏1/|𝜏2, 𝑘)

toProd1
𝜌1 ∈ [[𝜏1]]m size(𝜌1) > 𝑘

(𝜏1, 𝑘) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toProd2
𝜌1 ∈ [[𝜏1]]m 𝑠 = size(𝜌1) ≤ 𝑘

(𝜏2, 𝑘 − 𝑠)≺Pm (𝜏1 × 𝜏2, 𝑘)

toArr
®𝜌 · ⟨𝜌′⟩ ∈ [[𝜏]]+m size(®𝜌) ≤ 𝑘 < size(®𝜌 · ⟨𝜌′⟩)

(𝜏, 𝑘 − size(®𝜌)) ≺Pm (𝜏[𝑒], 𝑘)

toEx
𝑣 ∈ L𝜏1 Mm

(𝜏2 [𝛼 ← 𝑣], 𝑘) ≺Pm (∃𝛼 : 𝜏1 .𝜏2, 𝑘)

toProd1Cst
size(𝜏1) > 𝑘

(𝜏1, 𝑘) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toProd2Cst
𝑠 = size(𝜏1) ≤ 𝑘

(𝜏2, 𝑘 − 𝑠) ≺Pm (𝜏1 × 𝜏2, 𝑘)

toArrCst
𝑠 = size(𝜏)

(𝜏, 𝑘%𝑠) ≺Pm (𝜏[𝑒], 𝑘)

5 The DAG and Lattice of Type-Offsets
The type definitions Δ and type expressions 𝜏 of TypedC are used to define two abstractions of
addresses that help reasoning about aliasing: the DAG and lattice of type-offsets. Given an allocation
map m ∈ M, we saw that the denotation of pointer types L𝜂★ + 𝑒 Mm provides a meaning to the
pair of type name 𝜂 and constant offset eval (𝑒). This can be generalized to any closed type-offset
pair (TO) (𝜏, 𝑘) ∈ P ≜ T × N. We can view a type-offset pair (𝜏, 𝑘) as an abstraction of the set of
addresses 𝛾P,m (𝜏, 𝑘) ≜ {𝑎 ∈ A | (𝜏, 𝑘) ∈ path(m(𝑎))}. To obtain a sound abstraction, 𝛾P,m has to
be monotonic [19]; this allows us to derive the lattice of type-offset, detailed later in this section.
Observe that a concrete address 𝑎 goes through 3 successive levels of abstractions: (i) the byte tag
(𝜌, 𝑘) = m(𝑎), (ii) the path 𝜋 = path(𝜌, 𝑘), and finally (iii) one of the type-offset (𝜏, 𝑘 ′) in 𝜋 . In a
type system with both unions and records, none of these abstractions are exact, thereby each is
useful and needed. In particular, we also need to reason about paths (i.e., sequences of type-offsets),
and for this we rely on the DAG of type-offsets.

The path abstraction using the DAG of type-offsets. For a given allocation map m ∈ M, we define in
Table 5 a strict order relation, the type-offset derivation relation ≺Pm ⊆ P × P. The graph (P, ≺Pm)
is called a DAG of type-offsets. Such a DAG is a sound abstraction of all the possible sequences in
path(𝜌, 𝑘) for all well-formed 𝜌 ∈ R and all 𝑘 s.t. 0 ≤ 𝑘 < size(𝜌).
Intuitively, the relation ≺Pm follows the derivation relation ≺Δ on type expressions (see Fig. 2),

adding the offset 𝑘 . The relation between offsets in ≺Pm depends on the size of type expressions
involved in product or array types, which is not always a constant in the presence of both union
and record types. For this reason, we have two sets of rules: toProd1, toProd2 and toArr apply
to type-offsets whose first component fails to satisfy the constant prefix hypothesis in Def. 4.3,
while toProd1Cst, toProd2Cst and toArrCst simplify the previous rules respectively when the
hypothesis is met. We prove in [70, App. A] that ≺Pm is well-founded when ≺Δ is well-founded.
Using ≺Pm, we define in Table 6 the set of paths in the DAG of type-offsets, P+m, where each path
ends in (byte, 0) (as paths of well-formed region tags end in byte). We also prove in [70, App. A]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:16 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 6. Well-formed type-offsets and their concretization into sequences of type-offsets and addresses

P
+
m ≜{𝜋 ∈ P+ | ∀𝑖 . 𝜋 [𝑖 + 1]≺Pm𝜋 [𝑖]∧

last(𝜋) = (byte, 0)}
𝛾P+,m (𝜏, 𝑘) ≜ {𝜋 ∈ P+m | (𝜏, 𝑘) ∈ 𝜋}

Pm ≜{(𝜏, 𝑘) ∈ P | ∃𝜋 ∈ P+m . (𝜏, 𝑘) ∈ 𝜋}
𝛾P,m (𝜏, 𝑘) ≜ {𝑎 ∈ A |m(𝑎) ∈ 𝛾P+,m (𝜏, 𝑘)}
𝛾P (𝜏, 𝑘) ≜ {𝑎 ∈ A | ∃m. 𝑎 ∈ 𝛾P,m (𝜏, 𝑘)}

that P+m over-approximates the set {m(𝑎) | 𝑎 ∈ dom(m)} of paths inm. Finally, we define Pm, which
restricts P to the type-offsets found in the DAG of type-offsets for m.

The lattice of type-offsets. For a givenm, the join semi-lattice of type-offsets𝑇𝑂m = ⟨Pm, ⊑Pm, ⊔Pm ⟩
is used to concretize and to define the join and inclusion operations of our representation of
addresses. The order relation ⊑Pm is defined as the domination relation in the type-offset DAG
induced by ≺Pm, whose only start node is (byte, 0). This implies that ⊑Pm is a tree relation of root
(byte, 0). Therefore, (𝜏1, 𝑘1) ⊔Pm (𝜏2, 𝑘2) is defined to be the least-common ancestor on this tree
relation.

In Table 6, we decompose the definition of 𝛾P,m using the concretization 𝛾P+,m of a type-offset into
the set of paths that traverse it. This allows us to prove (see [70, App. A]) the following fundamental
theorems for physical subtyping [11] and type-based alias analysis [24] in our type system.

Theorem 5.1. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm.
(1) If (𝜏1, 𝑘1) ⊑Pm (𝜏2, 𝑘2) then 𝛾P,m (𝜏1, 𝑘1) ⊆ 𝛾P,m (𝜏2, 𝑘2), i.e., a dominating type-offset includes

the addresses of the dominated type-offset.
(2) If 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ then 𝛾P,m (𝜏1, 𝑘1) ∩ 𝛾P,m (𝜏2, 𝑘2) = ∅, i.e., if there is no path

going through both (𝜏1, 𝑘1) and (𝜏2, 𝑘2) then they don’t share any addresses.

Example 5.2. For any m in Fig. 5, we have (int, 0)≺Pm (inode, 4) and (int, 0)≺Pm (node, 4).
Because (int, 0) is the least common predecessor of each in the type-offset DAG, it is the immedi-
ate dominator, and thus the result of (inode, 4) ⊔Pm (node, 4). Furthermore, pointers typed by
(inode, 4) and (node, 8) do not alias as there is no path shared between these type-offsets.

Abstracting over allocation maps. Both relations defined above, ≺Pm and ⊑Pm, depend on an
allocation map. However, this allocation map is not known during the analysis. Therefore, we
abstract it by defining ≺P ≜

⋃
m∈M ≺Pm. The direct definition of ≺P is simple under the constant

prefix hypothesis: just replace ≺Pm by ≺P in Table 5, and rewrite the premise of the rule toEx as
“∃m ∈ M well-formed, 𝑣 ∈ L𝜏1 Mm” to be independent of a fixedm. Reasoning about aliasing without
the constant prefix hypothesis is possible but harder. Finally, the join semi-lattice ⟨P, ⊑P, ⊔P ⟩ is
defined by domination on the DAG induced by ≺P, like we did for ⟨Pm, ⊑Pm, ⊔Pm ⟩.

6 Concrete Semantics
The goal of our type system is to provide the following invariant on the heap: there exists an
allocation map such that the heap is well-typed. This invariant, built on an enriched program
semantics (detailed in [70, App. B]) that adds an allocation map to the heap, allows a static analysis
to gain precision when values are loaded, but simultaneously requires the analysis to prove that
writes to memory (stores) maintain the invariant.

Concrete states. In an untyped execution semantic, program states 𝑠 are pairs (𝜎, h) ∈ S of a
store � ∋ 𝜎 : X→ V mapping program variables (including registers) in X to values, and a heap
h : A ⇀ V1 mapping allocated addresses to one byte values. We consider a typed semantics by
constraining the values in the stack by a type and those in the heap by an allocation map m. Thus,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:17

for a given m, the set of values that can be stored at addresses tagged by 𝜌 ∈ R is defined as follows:

L byte Mm ≜ V1 L𝜏/®𝜌 Mm ≜ L𝜏 Mm ∩ {𝑣0 :: . . . :: 𝑣𝑛−1 | 𝑣𝑖 ∈ L ®𝜌 [𝑖] Mm, 𝑖 ∈ [0..𝑛]} (1)

Awell-typed heap is a pair (m, ℎ) wherem is well-formed, dom(ℎ) = dom(m) and for all 𝑎 ∈ dom(m),
ℎ(𝑎) :: . . . :: ℎ(𝑎 + size(m(𝑎)) − 1) ∈ Lm(𝑎) Mm. Intuitively, well-typedness constrains the values in
the heap to belong to those of the corresponding region in the allocation map.

Rules for load. Load rules use the above constraints to extract knowledge about the value being
loaded. Let 𝑎 ∈ A be an address and ℓ ∈ N a strictly positive integer such that [𝑎..𝑎 + ℓ] ∈ dom(ℎ).
We denote by h[𝑎..𝑎+ ℓ] the load from heap operation which returns the bit vector of size ℓ obtained
by concatenation of values ℎ(𝑎) :: ℎ(𝑎 + 1) :: . . . :: ℎ(𝑎 + ℓ − 1). The store to heap operation at
address 𝑎 on ℓ consecutive values with the new value 𝑣 ∈ Vℓ is denoted by h[𝑎..𝑎 + ℓ ← 𝑣].

Proposition 2 (Typed Load). Let (m, ℎ) be a well-typed heap and 𝑎 be an address such that
[𝑎..𝑎 + ℓ] ⊆ dom(ℎ) for some ℓ and (𝜌, 𝑘) = m(𝑎). Then h[𝑎..𝑎 + ℓ] ∈ { 𝑣 [𝑘..𝑘 + ℓ] | 𝑣 ∈ L 𝜌 Mm }.

The above proposition enables inferring properties about the contents of the heap. Suppose a
C function which receives a pointer p of type node★ (like extend in Fig. 5). If we load 4 bytes
from p+8, we know that we will receive a value 𝑣 in L node★ Mm or in L nullptr Mm (depending on
the initial value of (m, ℎ)). Furthermore, if the test 𝑣 equals 0 succeeds, because 0 ∉ L node★ Mm
we deduce that the region corresponding to p cannot have 𝜌2node as a region tag, and that a value
obtained by another load at p+12 would also be in L nullptr Mm (i.e., would also be 0).

Rules for store and mild update. A store is safe if we can find a matching allocation map such that
the new heap is well-typed, but also if existing typing judgments are preserved after the store.

Definition 6.1 (Safe store). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) and 𝑣 ∈ Vℓ . The store
h[𝑎..𝑎 + ℓ ← 𝑣] is safe if there exists m′ such that:
(1) (m′, h[𝑎..𝑎 + ℓ ← 𝑣]) is a well-typed heap, and
(2) typing judgments are preserved: ∀𝜏 ∈ T : ∀𝑣 ∈ V : 𝑣 ∈ L𝜏 Mm ⇒ 𝑣 ∈ L𝜏 Mm′

Intuitively, condition (1) above corresponds to finding an allocation map such that the heap
is well-typed after the store. The resulting allocation map may differ at addresses outside of the
[𝑎..𝑎 + ℓ] range. For instance, the program may perform a partial store, with 𝑣 ∈ Vℓ at address 𝑎 at
some offset 𝑘 inside a memory region of size 𝑠 s.t. 𝑠 > 𝑘 + ℓ . However, this partial store may require
changing the region tag of the whole region. This case is dealt by the following theorem:

Theorem 6.2 (Safe store inside a region). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) an
allocated address such that (𝜌, 𝑘) ∈ m(𝑎) and 𝑠 = size(𝜌). Let 𝑣 ∈ Vℓ be a value. Then ℎ[𝑎..𝑎 + ℓ ← 𝑣]
is a safe store iff ℎ[𝑎 − 𝑘..𝑎 − 𝑘 + 𝑠 ← ℎ[𝑎 − 𝑘..𝑎] :: 𝑣 :: ℎ[𝑎 + ℓ ..𝑎 − 𝑘 + 𝑠]] is a safe store.

Condition (2) of Def. 6.1 corresponds to type preservation. Following the definitions in Table 4,
it is easy to prove that condition (2) amounts to a monotony condition on the pointer types, i.e.,
∀𝜂, 𝑘 : L𝜂★ + 𝑘 Mm ⊆ L𝜂★ + 𝑘 Mm′ . This is easily proved when m′ = m, which corresponds to a weak
update. Arbitrary changes to m, as in a strong update (that we do not allow) would break this
condition: given 𝑎 ∈ L𝜂★ + 𝑘 Mm, we can change m(𝑎) so that 𝑎 ∉ L𝜂★ + 𝑘 Mm′ after the update.
Consider a pointer p of type inode★ in Fig. 5. The judgment p:inode★would no longer be true
if we wrote 0 at p+8 and p+12. Thus, because pointers to interior nodes may exist, we cannot
transform them into leaf nodes, as this would require a strong update.

Mild updates are those that changem, the invariant on the contents of the heap, without breaking
existing typing judgments. They are possible mainly because pointers are to type names, and not
to arbitrary types. For instance, suppose that the function extend in Fig. 5 modifies a leaf node to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:18 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 7. Definition of the abstract domains (top) and their meaning (bottom)

𝛼 ∈ � (symbolic variables) Ê ∋ 𝑒 ::= 𝛼 | 𝑘 | 𝑒 ⋄ 𝑒 | 𝑒 :: 𝑒 | 𝑒 [𝑘1 ..𝑘2] (symbolic expressions)
𝜈 ∈ � ≜ �→ V (valuation) T̂ ∋ 𝜏 ::= 𝜂 | 𝜏★ + 𝑒 | {self : 𝜏 | 𝑒} | 𝜏1 × 𝜏2 | ... (symbolic types)

𝜈♯ ∈ �♯ (numerical domain) Γ♯ ∈ �♯ ≜ Ê⇀ (T̂ × Ê) (abstract type environment)
𝑥 ∈ X (prog. variables) 𝜎♯ ∈ �♯ ≜ X→ Ê (abstract store) 𝑠♯ ∈ S♯ ::= �♯ × �♯ × �♯ (abstract state)

𝛾
Ê
: Ê→ (�→ V) 𝛾

Ê
(𝑒) ≜ 𝜆𝜈. eval(subst(𝑒, 𝜈))

𝛾
T̂
: T̂→ (M × �) → P(V) 𝛾

T̂
(𝜏) ≜ 𝜆(m, 𝜈) . L subst(𝜏, 𝜈) Mm with

L𝜏★ + 𝑒 Mm ≜ {𝑎 ∈ A | (𝜏, eval(𝑒)) ∈ path(m(𝑎))}

𝛾
�♯ : �♯ → M→ P(�) 𝛾

�♯ (Γ♯) ≜ 𝜆m.
⋂

(𝑒1 ↦→(𝜏,𝑒2)) ∈Γ♯
{𝜈 ∈ � | 𝛾

Ê
(𝑒1) (𝜈) ∈ 𝛾T̂ (𝜏★ + 𝑒2) (m, 𝜈)}

𝛾�♯ : �
♯ → P(�) (given by the numerical domain)

𝛾
�♯ : �♯ → (�→ �) 𝛾

�♯ (𝜎♯) ≜ 𝜆𝜈. 𝜆𝑥 . 𝛾
Ê
(𝜎♯ (𝑥)) (𝜈)

𝛾
M♯ : �♯ → (M × �) → P(S) 𝛾

M♯ (𝜎♯) ≜ 𝜆(m, 𝜈) . {(𝜎,ℎ) | 𝜎 ∈ 𝛾
�♯ (𝜎♯) (𝜈) ∧ (m, ℎ) well-typed}

𝛾
S♯ : S♯ → P(S) 𝛾

S♯ (𝜎♯, Γ♯, 𝜈♯) ≜
⋃

m∈M,𝜈∈𝛾
�♯
(Γ♯) (m)∩𝛾

�♯
(𝜈♯)

𝛾
M♯ (𝜎♯) (m, 𝜈)

turn it into an interior node by changing the two last fields from null to non-null pointers. As there
is no name for the leaf node type, no “pointer to leaf node” type exists. Then, the fact that extend
decreases the number of leaf nodes in m′ is not a problem. We also have L node★ Mm = L node★ Mm′
as the type node★ cannot distinguish a pointer to an interior node from a pointer to a leaf node.
Finally, L inode★ Mm′ increases, which is allowed. Thus, extend is well-typed.
To verify the monotony, we just verify that the paths in the new allocation map m′ contain all

the type-offset pairs (𝜂, 𝑘), for which the type is a type name, that were in the previous allocation
map m (i.e., all the paths must go through the same “circled nodes” in Fig. 5).

Theorem 6.3 (Name matching implies monotony). Let m,m′ ∈ A⇀ R.
If ∀𝑎 ∈ dom(m) : {(𝜂, 𝑘) ∈ path(m(𝑎))} ⊆ {(𝜂, 𝑘) ∈ path(m′ (𝑎))},
Then ∀𝜏 ∈ T : L𝜏 Mm ⊆ L𝜏 Mm′ and [[𝜏]]m ⊆ [[𝜏]]m′ .

For instance, a call to function to_leaf in Fig. 4 transforms an interior node at address p whose
region tag is 𝜌2node to a leaf node. To make the resulting heap well-typed, the new region tag of
p shall be 𝜌1node. But path(𝜌1node, 10) in Fig. 5 does not contain the type-offset (inode, 10), while
path(𝜌2node, 10) does, so we reject this change. The opposite change, like in the extend function,
makes every path go through more circled nodes, so it is well-typed.

7 Type-Checking by Abstract Interpretation
Our analysis is defined as an abstract interpretation [18]. This section shortly presents the definition
of our abstract domains and their meaning using concretization functions 𝛾 , some abstract trans-
formers and their soundness. The detailed definition of abstract transformers and their properties
is given in [70, App. C].

7.1 Abstract Domains
The main abstract domain of our analysis is the domain of abstract states S♯, which mimics the
structure of concrete states S (see §6). Table 7 summarizes the components of this main domain and
their meaning using concretization functions 𝛾 . Below, we give an intuition on each component.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:19

Symbolic expressions Ê are expressions that may contain free variables in the set � of symbolic
variables. A valuation 𝜈 ∈ � is a mapping from symbolic variables to values. Given a valuation 𝜈 , we
represent by subst(𝑒, 𝜈) the constant term obtained from a symbolic expressions 𝑒 by substitution
of the free variables in 𝑒 with their values in 𝜈 . This is used in the concretization 𝛾

Ê
: symbolic

expressions are the abstract counterpart of constant values and closed terms in the concrete.
Symbolic types 𝜏 extend the TypedC’s types 𝜏 ∈ T defined in §3 to allow symbolic expressions

instead of constant expressions, but also to permit extended pointer types of the form 𝜏★+ 𝑒 (where
𝜏 is not needed to be a type name 𝜂) to improve precision of the analysis (see the discussion below).
Therefore, we provide a definition for L𝜏★ + 𝑒 Mm that extends Table 4. The concretization function
𝛾
T̂
first concretizes a symbolic type 𝜏 to a concrete type 𝜏 = subst(𝜏, 𝜈) given a valuation 𝜈 ; then,

𝛾
T̂
uses the set of values L𝜏 Mm for a given allocation map m. Thus, 𝛾

T̂
is a function which inputs

both a valuation 𝜈 and an allocation map m.
Abstract type environments Γ♯ have a role similar to type environments Γ in classical type theory,

which map terms to types Γ(𝑒) = 𝜏 , and allow judgments Γ ⊢ 𝑒 : 𝜏 . Similarly, our abstract type
environments Γ♯ map symbolic expressions 𝑒 to a pair (𝜏, 𝑒′) built from a symbolic type and a
symbolic offset; furthermore, Γ♯ (𝑒) = (𝜏, 𝑒′) implies the semantic judgment 𝑠♯ ⊨ 𝑒 : 𝜏★ + 𝑒′ (where
Γ♯ is a component of 𝑠♯). Noteworthy, Γ♯ only relates expressions to pointer types because this
is the only information which may not be represented by the numerical domain. Therefore, the
static analysis gets us a flow-sensitive typing where the properties of the numerical expressions
can be stored by the numerical domain 𝜈♯ and retrieved using the typing rules when necessary.
Because a symbolic expression 𝑒 is concretized to a value (by 𝛾

Ê
) using a valuation 𝜈 , the abstract

type environment Γ♯ can be interpreted (using 𝛾
�♯) as a set of constraints on the valuations �. For

instance, if we derive using Γ♯ that 𝛼 − 1 is typed by {self:byte[4] | self % 2 = 0}, then the
valuation 𝜈 is constrained such that 𝜈 (𝛼) is odd. The second argument of 𝛾

�♯ is an allocation map
m used to interpret symbolic types as sets of values.
As mentioned above, Γ♯ uses symbolic pointer types 𝜏★ + 𝑒 that extend the pointer types of

TypedC. The reason is that the analysis may infer type judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜏★+𝑒2 where
𝜏 is not a type name (for instance in Fig. 5, if we have 𝑠♯ ⊨ 𝑒 : node★ and the value loaded at 𝑒 + 8 is
null, we can infer that 𝑒 points to a leaf node, i.e. 𝑠♯ ⊨ 𝑒 :

(
inode?× int× nullptr× nullptr

)
★).

One problem of the type judgments on extended types is that they may not be preserved by a mild
update (see §6), unlike judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜂★+ 𝑒′. Thus, in the formalization of abstract
transformers (see [70, App. C]), we limit Γ♯ to contain mappings to pairs of the form (𝜂, 𝑒). This
means that judgments of the form 𝑠♯ ⊨ 𝑒 : 𝜏★ + 𝑒2 can be made but cannot be saved in Γ♯, which
makes sound the abstract semantics of store on heap operations.

The numerical domain �♯ complements the set of constraints of Γ♯. Elements of �♯ are numerical
constraints over symbolic terms (such as 3 ≤ 𝛼 + 1 ≤ 7), and are interpreted by 𝛾�♯ as a set of
valuations that match all these constraints. All the classical numerical domains (e.g., intervals [18],
congruences [31], octagons [52],...) can be used.

The memory is abstracted using abstract stores 𝜎♯, which map program variables X to symbolic
expressions Ê, an abstract counterpart to the concrete stores. Abstract stores are concretized by
𝛾
�♯ to stores using a valuation of the symbolic expressions. There is no abstract counterpart to the
concrete heap. Indeed, one of the goals of our type system is to define invariants on the memory that
allow the program analysis without a representation of the heap (unlike, for instance shape analysis),
in order to obtain fast analysis operations. However, given an abstract store 𝜎♯, an allocation map
m and a valuation 𝜈 , we can define the set of all the possible corresponding concrete states (𝜎,ℎ)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:20 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 8. Some abstract transformers rules for expression evaluation and memory load

Const: {𝑠♯0 } 𝑘 ⇓ 𝑘 {𝑠
♯

0 } Var: {𝑠♯0 } 𝑥 ⇓ 𝑠
♯

0 .𝜎
♯ [𝑥] {𝑠♯0 } Load:

{𝑠♯0 } 𝐸 ⇓ 𝑒1 {𝑠
♯

1 } {𝑠♯1 } ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠
♯

2 }

{𝑠♯0 } ∗ℓ 𝐸 ⇓ 𝑒2 {𝑠
♯

2 }

Binop ⋄:
{𝑠♯0 } 𝐸1 ⇓ 𝑒1 {𝑠♯1 } {𝑠♯1 } 𝐸2 ⇓ 𝑒2 {𝑠♯2 } 𝑠

♯

2 ⊨ 𝑒2 ≠ 0 (if ⋄ = /)

{𝑠♯0 } 𝐸1 ⋄ 𝐸2 ⇓ 𝑒1 ⋄ 𝑒2 {𝑠♯2 }
PtrAdd:

𝑠♯ ⊨ 𝑒 : (𝜏★ + 𝑒1)
𝑠♯ ⊨ (𝑒 + 𝑒2) : 𝜏★ + (𝑒1 + 𝑒2)

LoadSimple:
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ size(𝜏) = ℓ 𝑠
♯

0 ⊨ 𝑒2 = 0 𝛼 fresh 𝑠
♯

0 ∧ 𝛼 : 𝜏 ⇒ 𝑠
♯

1

{𝑠♯0 } ∗ℓ𝑒1 ⇓ 𝛼 {𝑠
♯

1 }

LoadLarger:
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2 ℓ2 ≥ 𝑘 + ℓ1 {𝑠♯0 } ∗ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1 }

{𝑠♯0 } ∗ℓ1𝑒1 ⇓ 𝑒3 [𝑘..𝑘 + ℓ1] {𝑠
♯

1 }

using the function 𝛾
M♯ (where M♯ stands for memory). Noteworthy, the only constraint on the heap

is that (m, ℎ) is well-typed, which implies that 𝛾
M♯ (𝜎♯) will be empty if m is not well-formed.

The abstract state combines store, typing and numerical abstractions 𝑠♯ = (𝜎♯, Γ♯, 𝜈♯). Their
concretization 𝛾

S♯ uses all the available elements in an abstract state to define the most precise set
of possible states: given an allocation map m, we find valuations 𝜈 that fulfil the constraints given
by Γ♯ and 𝜈♯, and we use them to build the set of all possible states using 𝜎♯.
This abstract state (and the analysis) may be easily extended with additional components. One

particularly interesting addition are the points-to predicates [61], which partially represent the heap
by relating pointer values to their contents. A reduced product between the points-to predicates
and our domain allows using aliasing information obtained by types to know which points-to
predicates are preserved by a store operation, or transferring typing judgments about the type of a
pointed value to the type of the pointer.

7.2 Flow-Sensitive Analysis
Our analysis is derived from the definition of our abstract domain and its concretisation, as usual in
abstract interpretation [17, §45]. The basic transformers required by the abstract domain (reading
from memory, storing in memory, computing expressions, testing conditions) involve additional
operations to interchange information between the different parts of the analysis. We present all
these operations and their soundness theorem in [70, App. C]. As an illustration, we provide in
Table 8 some of the rules necessary to handle the evaluation of expressions, including loading from
memory, in a simple language whose semantics is close to that of machine code.

We adopt an axiomatic formalization of the abstract transformers, where different logical asser-
tions correspond to different modules of the analyzer (in particular, abstract domains). For instance,
the abstract evaluation of a program expression 𝐸 into a symbolic expression 𝑒 [42] starting from
the abstract state 𝑠♯0 is denoted by the Hoare triple {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1}. These assertions are defined
by inference rules, so a proof tree may be used as a witness for type-safety [56, 59]. The actual
implementation of the analysis (see §8) is a forward abstract interpretation derived from these
rules: e.g., the implementation of {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1} is a function returning 𝑒 and 𝑠♯1 from 𝑠
♯

0 and 𝐸.
Noteworthy, the implementation does not need to perform any backtracking proof search.
The evaluation of expression start by rules of the form {𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠♯1} done by a symbolic

expression analysis domain [42] translating program expressions to symbolic expressions. When
evaluating a division (rule Binop /), the rule checks that the denominator is not null by querying
the numerical abstract domain (assertion 𝑠♯2 ⊨ 𝑒2 ≠ 0); an alarm is reported otherwise. The presence
of such conditions make our type safety proof to imply the absence of runtime errors.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:21

When a new symbolic expression, like 𝑒 + 𝑒2, is created, new information is attached to it in
the numerical or in the type domain. The rule PtrAdd illustrates the case of the type domain,
which infers symbolic types for symbolic expressions, i.e., assertions 𝑠♯ ⊨ 𝑒 : 𝜏 . When a program
expression reads ℓ bytes at address 𝐸, denoted by ∗ℓ𝐸 (rule Load), the evaluation involves memory
domains. These domains handle assertions of the form {𝑠♯0} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠

♯

1}, meaning that the value
read at the addresses given by 𝑒1 is the symbolic expression 𝑒2. The rule LoadSimple first queries
the type domain to check if 𝑒1 is a pointer that allows loading ℓ bytes (this ensures memory safety
of the load), then creates a fresh symbolic variable 𝛼 and propagates the type information 𝛼 : 𝜏 to
obtain new numerical information due to refinement types. Rule LoadLarger applies when only a
part of the target region is read. In this case, we load the full region and we extract the relevant
part as the result.

The soundness of the analysis is done inductively by proving the soundness of each rule, i.e., we
prove the soundness of the logical assertion in the conclusion from the soundness of the hypotheses.
For instance, it is easy to prove sound the rule Binop once we define the soundness of logical
assertions appearing in this rule:

Lemma 7.1 (Soundness of eval). Suppose {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠
♯

2} and 𝑠 ∈ 𝛾S♯ (𝑠♯1) and 𝑠 ⊢ 𝐸 ⇓ 𝑣 . Let
(m, 𝜈) such that 𝑠 ∈ 𝛾

M♯ (𝑠♯1) (m, 𝜈). Then 𝑠 ∈ 𝛾
S♯ (𝑠♯2) and 𝑠 ∈ 𝛾M♯ (𝑠♯2) (m, 𝜈) and 𝛾Ê (𝑒) (𝜈) = 𝑣 .

Lemma 7.2 (Numerical qeries). If 𝑠♯ ⊨ 𝑒 , 𝑠 ∈ 𝛾
S♯ (𝑠♯) and 𝑠 ∈ 𝛾M♯ (𝑠♯) (m, 𝜈), then 𝛾Ê (𝑒) (𝜈) ≠ 0.

8 Evaluation
This section presents the implementation of the TypedC type system in a static analyzer and its
evaluation on a benchmark of binary and C programs. It aims to answer the followingmeta-question:
Is our approach based on semantic type-checking by abstract interpretation promising

for proving spatial memory safety? We decompose this question in three research questions:
RQ1: Expressivity Is TypedC able to specify the low-level code patterns necessary to statically

prove spatial memory safety of C and binary code?
RQ2: Performance Is the automatic analysis able to find bugs or to prove spatial memory

safety with good performances in precision and time?
RQ3: Effort What is the specification effort, and how does it compare with the effort of state-

of-the-art approaches to verify spatial memory safety like CheckedC [28, 48, 68]?

Implementation and experimental setup. We implemented our analysis as part of Codex, an open
source analyzer for C and machine code written in OCaml. Codex is a generic abstract interpreter
able to detect different runtime errors (e.g. division by zero, illegal opcode, null pointer dereferences,
etc.), here extended to also detect type-unsafe operations. It contains several abstract domains for
value and memory analyses. We extended the inter-procedural analysis in Codex with the abstract
domain based on TypedC.
The analysis presented in §7 is faithful to our actual implementation, except for the following

additional components. Firstly, the simple abstract stores 𝜎♯ are replaced with a domain more
suitable to the languages we handle. For C, Codex relies on the platform Frama-C to parse C files
into a CFG and replaces 𝜎♯ with a flow-sensitive representation of addressable C local and global
variables (similar to [51]). For machine code, Codex relies on the platform Binsec to translate
machine code instructions into a simpler intermediate language, and replaces 𝜎♯ with a flow-
sensitive abstraction of the stack, registers and global variables. Codex also includes in 𝑠♯ several
abstract domains to reconstruct the control-flow graph [6, 38] during the analysis. In both C and
machine code, our analysis employs points-to predicates similar to [61], but extended to support

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:22 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

cross-refinement between points-to predicates and type judgments. An additional supporting
abstract domain allows us to deal precisely with disjunctions of values coming from union types.
Codex’s inputs are (i) the (full C or binary) code, (ii) the entry point of the analysis given by

the name of a function to be analyzed, and (iii) the type specification file (see below). The ABI
parameter is fixed in our experimental setting to x86_32. Codex outputs alarms when it detects:
(a) an invalid memory access, e.g., out-of-bounds accesses to an array or structure or null pointer
read or write; (b) a violation of a type specification, e.g., a load done at a non pointer value or
a store with a value breaking the invariant of the specified type for the memory location; (c) a
run-time error not concerning the memory, e.g., division by zero. Our test system uses an Intel
Core i9-11950H machine with 32GB RAM running Ubuntu 22.04.

Benchmark selection. For our evaluation, we selected examples of C and binary code issued
from real applications or existing challenging benchmarks used by static or dynamic methods for
checking spatial memory safety. We split the examples in four parts, presented in Tables 9–10:
(1) OS includes QDS [23] (see Fig. 1), Contiki [27], and Linux RBTree [5] (see Fig. 3) which are

excerpts from proprietary (QDS) or free OSes;
(2) Emacs includes functions from the Emacs Lisp run-time [29] version 27.2 (executable compiled

by Debian); the functions manipulate various data structures (e.g., list, string, vector – see Fig. 2) in
a particular or a generic way (e.g., length for number of elements in any kind of collection);

(3) Shapes is used in [61] to challenge their analysis based on a simpler type system; it includes
collections of various shapes benchmarks (e.g., linked lists, trees, graphs);

(4) Olden is a standard benchmark for tools checking spatial memory safety [15, 48, 58, 60, 66].
Each case study is superscripted by bin or C when only one kind of code is analyzed.5 In these
examples, we observed the following challenging code patterns: (BS) bit-stealing, (DU) discriminated
union for variant types, (NLI) non-local invariants, (FAM) flexible array member, (IP) interior
pointers and (P?) possibly null pointer. Tables 9–10 indicate by ✓ the patterns found for each case.

1 typedef struct node {
2 int value;
3 struct node *left;
4 struct node *right;
5 } node;
6 ... // Other functions
7 node* RandTree(int, int, int, int);
8 int Bimerge(node*, int, int);
9 int Bisort(node*, int, int);

1 def node_pu(h) := union {
2 (node(h)+ with h>0) case1;
3 ((int with self==0) with h==0) case2;
4 };
5 def node(h) := struct {
6 int value;
7 node_pu(h-1) left;
8 node_pu(h-1) right;
9 };
10 def node_pp := ∃h:(int with self>0).node(h)+
11 def node_pz := ∃h:(int with self>0).node(h)?
12 ... // Other functions
13 node_pz RandTree(int, int, int, int);
14 int Bimerge(node_pp, int, int);
15 int Bisort(node_pp, int, int);

Fig. 6. Generated (top) and refined specifications.

Specification method. The results of the analysis
depend on the specification of prototypes given as
input. To write our specifications, we follow an it-
erative method that refines the C function proto-
types produced by the standard cproto tool from
the source code. We illustrate the C-like concrete
syntax of the specification files on an example ex-
tracted from Olden-bisort case study (Table 10). The
source code consists of 388 LoC and from it, cproto
generates a specification file given in part on top of
Fig. 6. With the generated specification, the analysis
produces 9 (false) alarms. After reading the imple-
mentation of RandTree, we understood that the in-
ternal nodes always have two non-null children. We
refine the specification of type node to introduce
the union of two cases: both children null or both
children non-null (we omit it for space reason). We
also specify that the arguments of some functions
cannot be a null pointer. In total, this adds 8 lines
and modifies 6 lines of the original specification. By

5Some binary code is obtained by compiling existing C files, other – QDS, Emacs – is existing binary code.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:23

Table 9. Experimental data for OS, Emacs and Shape benchmarks where #LoC is the number of commands;

#Entry is the number of entry functions analyzed; Spec is the number of lines generated with cproto (gen)

vs. manually changed (man) in type specification; #Alarm is the number of alarms with generated (gen) resp.

manually changed (final) specification, and the (true) alarms identified with manual specification; Time is

the global time (parsing the specification, parsing the code and running the analysis).

Case studies #LoC #Entry Code patterns Spec #Alarms Time

BS DU NLI FAM IP P? gen man gen final true (s)

O
S

Contiki 329 12 – – – – – ✓ 19 14 16 2 0 1.33
QDSbin 401 3 – ✓ ✓ – – ✓ 83 83 18 0 0 1.28

RBTree Linux 1 111 2 – – – – ✓ ✓ 29 17 6 2 0 0.46

Em
ac
s listbin 464 8 ✓ ✓ – – – ✓ - 0 0 3.03

stringbin 109 5 ✓ ✓ ✓ – – ✓ 73 - 4 0 3.20
bufferbin 42 3 ✓ ✓ – ✓ – ✓ - 0 0 3.12

Sh
ap
es

Graph 155 7 – – – – – ✓ 26 14 0 0 0 0.79
Javl 920 9 – – – – – ✓ 37 34 10 1 1 0.70
Kennedy 197 6 – – – – ✓ ✓ 44 24 6 0 0 0.74
RBtree 978 7 – – – – – ✓ 32 18 56 16 0 0.42
(6-)Other 5 742 19 – – – – – ✓ 113 50 43 5 0 3.79

running our analysis with this new specification file, we obtain one null-pointer dereference alarm
in Bimerge function. This false alarm may be removed by adding a dynamic check in the code
(which makes it type safe but may fail at runtime). It is better to remove it by further refining the
specification. Indeed, the alarm points out to us that the RandTree function builds a fully balanced
tree. To obtain this property, we change again the specification of node to introduce the height of
nodes as a parameter because it is not stored in the nodes, as at the bottom of Fig. 6 (where we use
+ for ★). With this specification file as input, there are no remaining alarms, which implies that the
code is spatially memory-safe. The effort of finding a specification (RQ3) is reduced by the help of
the analyzer. It is reduced compared to manually introducing dynamic checks or developing special
analyses in the compiler. This example and Tables 9–10 also demonstrate the expressivity of our
type system (RQ1).

Comparison with existing approaches. The Shape benchmark from Table 9 allows us to compare
indirectly with the shape analysis due to Nicole et al. [61]. Our times are comparable to their
analysis times, which in turn are much better (RQ2) than the ones obtained by state-of-the-art
tools used for shape analysis [12, 46, 47].
We also compare with CheckedC [28, 48], a state-of-the-art tool to make C code spatially

memory-safe. Qualitatively, one using CheckedC has to perform three kinds of code modifications:
(1) modification of the C code to handle limitations in the type system [48] like absence of unions,
or to comply with limitations of the type checker [28]; (2) insertion of annotations inside the
code to help the type checker; (3) insertion of runtime checks (bound checks and null-pointer
dereference checks) by the compiler, which may fail at runtime. Some of these code annotations
may be generated automatically using the annotation generator 3C [48]. By contrast, we only
require an external declaration of function prototypes, perform all checks statically, and do not
change the implementation (the C and machine code is unmodified). Quantitatively, the columns
CC+3C of Table 10 reproduce from [48] the number of changes made by CheckedC and the ones
that may be automatically generated by 3C. This shall be compared with the columns Spec which
contain the number of lines of our specifications generated with cproto (gen) and manually added
or changed (man). Columns #Alarms demonstrate that refining the specification avoids signaling
false alarms (i.e., column final contains less alarms than column gen). Final alarms are those we
cannot prove, even with our most precise specification, due (mostly) to analysis imprecision or
(sometimes) to the lack of expressivity in our type system. These alarms could be eliminated if we
modified the code to insert run-time checks, like CheckedC does (for this reason CheckedC does
not report alarms). These checks would degrade execution performance, but much less than when

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:24 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Table 10. Experimental data for Olden benchmarks used to compare with CheckedC and 3C. Columns

CC+3C: (man) are lines of code changed manually for CheckedC, some of them (gen) may be inferred with

3C; voronoi is not dealt by CheckedC.

Case studies #LoC #Entry Code patterns CC+3C Spec #Alarms Time

(Olden) BS DU NLI FAM IP P? man gen man gen gen final true (s)
bhC 2 107 30 – ✓ – – – ✓ 181 48 27 144 39 3 1 26.04
bisortC 356 11 – ✓ – – ✓ ✓ 92 34 26 29 9 0 0 2.18
em3dC 693 17 – – ✓ – – ✓ 158 88 52 53 42 15 0 6.48
healthC 485 13 – – – – – ✓ 99 57 39 57 16 4 0 5.96
mstC 431 5 – ✓ – – – ✓ 161 28 17 44 33 10 3 1.89
perimeterC 486 12 – ✓ – – – ✓ 44 10 69 41 13 1 0 1.64
powerC 618 17 – – – – – 83 30 26 75 26 5 0 6.04
treeaddC 249 2 – – – – – 46 16 0 19 0 0 0 0.42
tspC 617 12 – – ✓ – – ✓ 78 9 2 32 6 0 0 3.86
voronoiC 1 151 40 ✓ – – – – ✓ ✗ ✗ 38 101 57 44 0 21.35

the checks are systematically inserted, as in CheckedC or other dynamic methods. True alarms in
Shapes/Javl, Olden/bh and Olden/mst have been confirmed by manual inspection and correspond
to null pointer dereferences.

Conclusions. The added expressivity of our type system is necessary to represent the invariants
of challenging code without modification (e.g., observe the ✓ in Table 10). The analysis is quite
fast; there remains some imprecisions, but almost all of them are due to limitations of the analyzer
implementation (discussed in §10), not to the expressivity of the type system. Furthermore, allowing
the code to be modified would allow circumventing the current limitations of the analyzer. Finally,
the semantic type checking requires a much lesser effort than syntactic methods like CheckedC
(observe, e.g., the treeadd benchmark). Most of the effort was spent reverse-engineering the type
invariants, which would not be an issue if the tool were used during the development. Furthermore,
our semantic analysis helped to discover real issues in the analyzed code (see [70, App. D]).

9 Related Work
Memory models: A memory model is central to describe a programming language semantics
so as to prove the soundness of analyses, be it type checking, abstract interpretation, or both as
in our setting. High-level memory models, such as the Burstall-Bornat model [8, 9] where the
memory for different types is entirely separate, or abstract models like the CompCert memory
model [44, 45] that do not represent the value of pointers, cannot prove correct low-level operations
such as casts between different types or modifying pointers using arithmetic or bitwise operations.
Our memory model is concrete, i.e., corresponds to the machine semantics where all values,
including addresses, are just bit-vectors. It is thus maximally expressive and can be used to prove
sound low-level memory manipulations and the type and spatial memory safety of machine code.
However, verifying programs in the more complex C semantics may require adding constraints
like provenance [43, 49] to the model, to also be able to prove absence of miscompilation.
Semantic proofs of type soundness: The type-relevant aspects of our memory model simply
consists in complementing the heap with an allocation map from addresses to tags, similarly to [76].
This simplicity is due to the fact that TypedC is nominal. Building semantic models of heaps with
references to structural types (i.e., 𝜏★ instead of 𝜂★) is known to be a difficult issue [73]. Ahmed [2,
§3.2.3] explains the core problem: if we model store typings as mappings from addresses to types,
and types as predicates on store typings, we have a recursive definition which has an inconsistent
cardinality. The complexity of the solutions to this recursivity problem (e.g., in [22, 74]) was one of
the main reasons behind the rise of the syntactic method to prove type soundness [79]. For semantic
proofs, a generic solution is step-indexed logical relations [2], which avoids the recursivity issue by
stratifying the type system by indexing on the future evaluation steps. Such a solution would be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

✓
✓

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:25

difficult to employ for proving the soundness of operations in an abstract interpreter, where the
canonical model (that we use) relates an abstract domain to a set of states. Thanks to our nominal
type system, we propose a simple solution to this issue: pointer types point to region names instead
of type expressions, so they do not depend on a store typing, but on an allocation map, that can be
defined without types. Moreover, our semantic model is suited to use in an abstract interpreter.
Syntactic type-checking of low-level code: Several analyses have been proposed to prove
memory safety of low-level programs using type-checking. Some of these analyses use type systems
focused on the control of aliasing using ownership types or separation logic (e.g. [10, 13, 34, 69]), a
style of reasoning complementary to ours that has advantages, but also makes it difficult to reason
automatically on programs with arbitrary sharing of references.

Among type systems that have been proposed to prove spatial memory safety using a reasoning
based on invariant preservation, typed assembly languages [3, 55, 57, 80] have been used to prove
type safety of assembly code. However, they are tailored to prove the safety of a given type-safe
source language where the type derivation is provided by the compiler, not for the case where the
program is written in machine code and the type checking must be done automatically. Furthermore,
in these systems, the pointers are structural, not nominal.
The line of work which is closest to ours employs type systems for verifying spatial memory

safety of C-like languages. The main design of these systems relies on a combination between
syntactic type checking and program transformation by insertion of runtime checks, which adds
considerable overhead [58]. Furthermore, the runtime information needed by early systems like
Cyclone [35] and CCured [60] changes the layout of types in memory, causing incompatibility.
Deputy [15, 81] and CheckedC [28, 68] manage to maintain a compatible memory layout by using
dependent types, which requires the user to annotate the code; this offloads runtime work to the
static analysis phase. Our work continue in this area, by aiming to verify spatial memory safety
fully statically, which means only specification overhead and full compatibility, as we do not modify
the program. Some of these type systems support nominal nesting of structures, and Deputy also
supports some variant types. It is also common to reason about structure nesting to derive aliasing
information [24]. What we add in this area is our notions of region tags, byte tags, and the lattice
of type offsets, that extends type-based reasoning about aliases to type systems allowing both
concatenation and union of regions, and allows byte-level reasoning [51] about memory.
Run-time and hybrid type checking: Some approaches [25, 37] propose run-time type checking
for low-level languages like C/C++ which also guarantees memory safety. These approaches
correspond to the implementation of the concrete semantics (see §6) for a simplified version of
our type system. Because dynamic type checking methods have a run-time access to the allocation
map, they can deal with temporal memory safety and strong updates with a simpler type system
that does not include refined, existential or parameterized types, and all symbolic variables in types
are replaced by run-time constants. The drawback is a significant overhead at execution time and
no proof that the program will not crash with a type error during execution.
Type checking using abstract interpretation: Flow-insensitive syntactic type checking suffers
from inherent limitations [28] which are solved by annotating, porting the code, and inserting
dynamic checks. To alleviate this problem, automated porting tools have been developed for
CCured [60] and CheckedC [48, 68]. An alternative is to make the type checking algorithm more
precise, which is necessary when we cannot modify the source code, like in machine code analysis.
Harren [33] uses abstract interpretation to perform a flow-sensitive type checking for some

dependent type system, which is necessary to verify assembly code. His tool cannot handle in
particular non-local invariants and relies on the addition of ad-hoc type constructors (and typing
rules) to handle low-level constructs like union types, which we address in our type system. Low-
level liquid types [67] perform a flow-sensitive type inference, but the algorithm is not based on a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:26 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

standard abstract interpretation, which implies that it must make conservative decisions for some
analysis steps (e.g., fold and unfolding of variables) that impact the precision of the analysis. Their
memory structure is also limited to a flat system or regions.

The analysis of Nicole et al. [61] is the closest to ours, as it also combines abstract interpretation,
physical and refinement types to prove spatial memory safety. We extend their work by also
supporting unions (using union and existential types) and relations (using parameterized types)
between regions. This makes the type system, semantic model, and aliasing rules significantly more
complex. In particular, the main challenge when developing our type system and its semantic model
came from the interaction between union and concatenation of regions. Viewing types as program
abstractions has been studied theoretically in [16], and done in very different contexts [54].
Alias and memory analyses: There are many analyses that assume that a program is well-typed
to derive aliasing information [24, 62]. Using abstract interpretation to combine analyses [19], we
simultaneously prove that programs are well-typed and use this information to compute more
precise alias information, which helps type checking the program. There are flow-sensitive memory
analyses, e.g. [51], for low-level abstraction of memory regions, or shape analyses for low-level
code [26, 39, 41]) that can compute expressive invariants about memory. A type-based analysis like
ours, may be less precise but it is faster and more easily made modular, because the complex heap
invariants are implicitly represented by the flow-insensitive type definitions.

10 Conclusion
We have presented a rich non-substructural type system which is physical (types represent a
memory layout), nominal (pointers to different names do not alias just because they hold the
same content), and dependent (it captures complex relations between values and memory layout,
like array sizes). This type system is expressive enough to express many low-level programming
patterns found in C and binary code. We have used this type system to implement a modular
abstract interpreter [20] for low-level code, that performs an automated semantic type checking
against user-provided prototypes. Thanks to abstract interpretation, we can perform type checking
and inference in practice despite the undecidability of type-checking with dependent types. Our
type-checking implies spatial memory safety and has promising results on challenging benchmarks,
allowing us to verify code with a reduced effort.

We have identified three main limitations of our approach. First, our memory invariants cannot
represent temporal properties, which prevents us to prove temporal memory safety. Second, our
analysis imprecisely handles variable-length arrays and strings. This could be improved by using
specific abstractions for arrays [21] and strings [36]. Finally, the writing of type specification still
requires some manual work that should be automated in the future. For instance, Lattner’s [40]
data structure analysis could be used to automatically refine type specifications by introducing
more type names.

Acknowledgements
This researchwas supported in part by the Agence Nationale de la Recherche (ANR) grant agreement
ANR-22-CE39-0014-03 (EMASS project).

Data-Availability Statement
The software that supports §8 is available on Zenodo [71]. The artifact includes the sources of the
analyser Codex, the set of benchmarks used in §8, and the utilities (makefiles, scripts) to reproduce
the results presented in this section.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:27

References
[1] 2024. CODEX site. https://codex.top.
[2] Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton University. http://www.ccs.

neu.edu/home/amal/ahmedthesis.pdf.
[3] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010.

Semantic foundations for typed assembly languages. ACM Trans. Program. Lang. Syst. 32, 3 (2010), 7:1–7:67. https:
//doi.org/10.1145/1709093.1709094

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

[5] Andrea Arcangeli, David Woodhouse, and Michel Lespinasse. 2012. Linux Kernel Red Black Trees. https://github.com/
torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c

[6] Sébastien Bardin, Philippe Herrmann, and Franck Védrine. 2011. Refinement-Based CFG Reconstruction from Unstruc-
tured Programs. In 12th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
2011, Vol. 6538). Springer, 54–69. https://doi.org/10.1007/978-3-642-18275-4_6

[7] Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. 2023. Bit-Stealing Made Legal: Compilation for Custom Memory
Representations of Algebraic Data Types. Proc. ACM Program. Lang. 7, ICFP, 813–846. https://doi.org/10.1145/3607858

[8] Richard Bornat. 2000. Proving Pointer Programs in Hoare Logic. In Mathematics of Program Construction, Roland
Backhouse and José Nuno Oliveira (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 102–126.

[9] Rodney M Burstall. 1972. Some techniques for proving correctness of programs which alter data structures. Machine
intelligence 7, 23-50 (1972), 3. https://doi.org/10.1007/10722010_8

[10] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel. 2018. VST-Floyd: A separation
logic tool to verify correctness of C programs. Journal of Automated Reasoning 61 (2018), 367–422. https://doi.org/10.
1007/s10817-018-9457-5

[11] Satish Chandra and Thomas Reps. 1999. Physical type checking for C. ACM SIGSOFT Software Engineering Notes 24, 5
(1999), 66–75. https://doi.org/10.1145/381788.316183

[12] Bor-Yuh Evan Chang and Xavier Rival. 2013. Modular Construction of Shape-Numeric Analyzers. In Festschrift
for Dave Schmidt (EPTCS, Vol. 129), Anindya Banerjee, Olivier Danvy, Kyung-Goo Doh, and John Hatcliff (Eds.).
https://doi.org/10.48550/arXiv.1309.5138

[13] Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In
Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation. 234–245.
https://doi.org/10.1145/1993498.1993526

[14] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. In Aliasing in
Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.).
Lecture Notes in Computer Science, Vol. 7850. Springer, 15–58. https://doi.org/10.1007/978-3-642-36946-9_3

[15] Jeremy Condit, Matthew Harren, Zachary R. Anderson, David Gay, and George C. Necula. 2007. Dependent Types
for Low-Level Programming. In ESOP (Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.). Springer,
520–535. https://doi.org/10.1007/978-3-540-71316-6_35

[16] Patrick Cousot. 1997. Types as Abstract Interpretations. In Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17
January 1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 316–331. https://doi.org/10.1145/263699.
263744

[17] Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press. https://books.google.fr/books?id=
CUoQEAAAQBAJ

[18] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In 4th ACM Symposium on Principles of Programming Languages (POPL
1977). 238–252. https://doi.org/10.1145/512950.512973

[19] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In 6th ACM Symposium
on Principles of Programming Languages (POPL 1979). 269–282. https://doi.org/10.1145/567752.567778

[20] Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In Proceedings of the Eleventh International
Conference on Compiler Construction (CC 2002), R.N. Horspool (Ed.). LNCS 2304, Springer, Berlin, Grenoble, France,
159–178. https://doi.org/10.5555/647478.727794

[21] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. A Parametric Segmentation Functor for Fully Automatic
and Scalable Array Content Analysis. In Conference Record of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM Press, New York, Austin, Texas, 105–118. https://doi.org/10.1145/1925844.
1926399

[22] Luis Manuel Martins Damas. 1984. Type Assignment in Programming Languages. Ph. D. Dissertation. University of
Edinburgh.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

https://codex.top
http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf
http://www.ccs.neu.edu/home/amal/ahmedthesis.pdf
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/1709093.1709094
https://github.com/torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c
https://github.com/torvalds/linux/blob/5133c9e51de41bfa902153888e11add3342ede18/lib/rbtree.c
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1145/3607858
https://doi.org/10.1007/10722010_8
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/381788.316183
https://doi.org/10.48550/arXiv.1309.5138
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1007/978-3-540-71316-6_35
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://books.google.fr/books?id=CUoQEAAAQBAJ
https://books.google.fr/books?id=CUoQEAAAQBAJ
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.5555/647478.727794
https://doi.org/10.1145/1925844.1926399
https://doi.org/10.1145/1925844.1926399

272:28 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

[23] Vincent David, Christophe Aussaguès, Stéphane Louise, Philippe Hilsenkopf, Bertrand Ortolo, and Christophe Hessler.
2004. The oasis based qualified display system. In Fourth American Nuclear Society International Topical Meeting on
Nuclear Plant Instrumentation, Controls and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio,
USA. 11.

[24] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. 1998. Type-based Alias Analysis. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI’98) (PLDI’98). ACM, New York,
NY, USA, 106–117. https://doi.org/10.1145/277650.277670

[25] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: type and memory error detection using dynamically typed
C/C++. In Proceedings of PLDI, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 181–195. https://doi.org/10.1145/
3192366.3192388

[26] Kamil Dudka, Petr Peringer, and Tomás Vojnar. 2013. Byte-Precise Verification of Low-Level List Manipulation. In
Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings (Lecture
Notes in Computer Science, Vol. 7935), Francesco Logozzo and Manuel Fähndrich (Eds.). Springer, 215–237. https:
//doi.org/10.1007/978-3-642-38856-9_13

[27] Adam Dunkels. 2023. Contiki-OS. https://github.com/contiki-ng/contiki-ng/blob/release-4.9/os/lib/list.c
[28] Archibald Samuel Elliott, Andrew Ruef, Michael Hicks, and David Tarditi. 2018. Checked C: Making C Safe by

Extension. In 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018.
IEEE Computer Society, 53–60. https://doi.org/10.1109/SecDev.2018.00015

[29] Free Software Foundation. 2022. GNU Emacs source repository. https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.h?
h=emacs-28.2

[30] Jacques Garrigue. 2004. Relaxing the Value Restriction. In Functional and Logic Programming, 7th International
Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 2998),
Yukiyoshi Kameyama and Peter J. Stuckey (Eds.). Springer, 196–213. https://doi.org/10.1007/978-3-540-24754-8_15

[31] Philippe Granger. 1989. Static analysis of arithmetical congruences. International Journal of Computer Mathematics 30,
3-4 (1989), 165–190. https://doi.org/10.1080/00207168908803778

[32] Philippe Granger. 1992. Improving the Results of Static Analyses Programs by Local Decreasing Iteration. In Foundations
of Software Technology and Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992,
Proceedings (Lecture Notes in Computer Science, Vol. 652), R. K. Shyamasundar (Ed.). Springer, 68–79. https://doi.org/10.
1007/3-540-56287-7_95

[33] Matthew Harren. 2007. Dependent Types for Assembly Code Safety. Ph. D. Dissertation. University of California at
Berkeley.

[34] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast:
A Powerful, Sound, Predictable, Fast Verifier for C and Java. NASA Formal Methods 6617 (2011), 41–55. https:
//doi.org/10.1007/978-3-642-20398-5_4

[35] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling Wang. 2002. Cyclone:
A Safe Dialect of C.. In USENIX Annual Technical Conference, General Track. 275–288.

[36] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout. 2018. Modular static analysis of string manipulations
in C programs. In Static Analysis: 25th International Symposium, SAS 2018, Freiburg, Germany, August 29–31, 2018,
Proceedings 25. Springer, 243–262. https://doi.org/10.1007/978-3-319-99725-4_16

[37] Stephen Kell. 2016. Dynamically diagnosing type errors in unsafe code. In Proceedings of OOPSLA, Eelco Visser and
Yannis Smaragdakis (Eds.). ACM, 800–819. https://doi.org/10.1145/2983990.2983998

[38] Johannes Kinder, Florian Zuleger, and Helmut Veith. 2009. An Abstract Interpretation-Based Framework for Control
Flow Reconstruction from Binaries. In Verification, Model Checking, and Abstract Interpretation (VMCAI 2009), Neil D.
Jones and Markus Müller-Olm (Eds.). Springer, 214–228. https://doi.org/10.1007/978-3-540-93900-9_19

[39] Jörg Kreiker, Helmut Seidl, and Vesal Vojdani. 2010. Shape Analysis of Low-Level C with Overlapping Structures. In
VMCAI. 214–230. https://doi.org/10.1007/978-3-642-11319-2_17

[40] Chris Lattner. 2005. Macroscopic Data Structure Analysis and Optimization. Ph. D. Dissertation. Computer Science
Dept., University of Illinois at Urbana-Champaign, Urbana, IL. See http://llvm.cs.uiuc.edu..

[41] Vincent Laviron, Bor-Yuh Evan Chang, and Xavier Rival. 2010. Separating Shape Graphs. In Programming Languages
and Systems, 19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes in Computer
Science, Vol. 6012), Andrew D. Gordon (Ed.). Springer, 387–406. https://doi.org/10.1007/978-3-642-11957-6_21

[42] Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proceedings of the ACM on Programming
Languages 7, POPL (2023), 1895–1924. https://doi.org/10.1145/3554341

[43] Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, and Peter Sewell. 2022.
VIP: verifying real-world C idioms with integer-pointer casts. Proc. ACM Program. Lang. 6, POPL (2022), 1–32.
https://doi.org/10.1145/3498681

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

https://doi.org/10.1145/277650.277670
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1007/978-3-642-38856-9_13
https://doi.org/10.1007/978-3-642-38856-9_13
https://github.com/contiki-ng/contiki-ng/blob/release-4.9/os/lib/list.c
https://doi.org/10.1109/SecDev.2018.00015
https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.h?h=emacs-28.2
https://git.savannah.gnu.org/cgit/emacs.git/tree/lisp.h?h=emacs-28.2
https://doi.org/10.1007/978-3-540-24754-8_15
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/3-540-56287-7_95
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1007/978-3-540-93900-9_19
https://doi.org/10.1007/978-3-642-11319-2_17
https://doi.org/10.1007/978-3-642-11957-6_21
https://doi.org/10.1145/3554341
https://doi.org/10.1145/3498681

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:29

[44] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2014. The CompCert memory model. Cambridge
University Press, Chapter 32.

[45] Xavier Leroy and Sandrine Blazy. 2008. Formal Verification of a C-like Memory Model and Its Uses for Verifying
Program Transformations. J. Autom. Reason. 41, 1 (2008), 1–31. https://doi.org/10.1007/S10817-008-9099-0

[46] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. 2017. Semantic-directed clumping of disjunctive
abstract states. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 32–45. https:
//doi.org/10.1145/3093333.3009881

[47] Huisong Li, Xavier Rival, and Bor-Yuh Evan Chang. 2015. Shape Analysis for Unstructured Sharing. In Static Analysis
- 22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings (Lecture Notes in
Computer Science, Vol. 9291), Sandrine Blazy and Thomas P. Jensen (Eds.). Springer, 90–108. https://doi.org/10.1007/978-
3-662-48288-9_6

[48] Aravind Machiry, John H. Kastner, Matt McCutchen, Aaron Eline, Kyle Headley, and Michael Hicks. 2022. C to Checked
C by 3C (with appendices). CoRR abs/2203.13445 (2022). https://doi.org/10.48550/arXiv.2203.13445

[49] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson,
and Peter Sewell. 2019. Exploring C semantics and pointer provenance. Proc. ACM Program. Lang. 3, POPL (2019),
67:1–67:32. https://doi.org/10.1145/3290380

[50] Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17, 3 (1978), 348–375.
https://doi.org/10.1016/0022-0000(78)90014-4

[51] Antoine Miné. 2006. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics.
In Proc. of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’06).
ACM, 54–63. http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf.

[52] Antoine Miné. 2006. The octagon abstract domain. Higher-order and symbolic computation 19, 1 (2006), 31–100.
https://doi.org/10.1109/WCRE.2001.957836

[53] Raphaël Monat and Antoine Miné. 2017. Precise Thread-Modular Abstract Interpretation of Concurrent Programs
Using Relational Interference Abstractions. In Proceedings of VMCAI (LNCS, Vol. 10145), Ahmed Bouajjani and David
Monniaux (Eds.). Springer, 386–404. https://doi.org/10.1007/978-3-319-52234-0_21

[54] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2020. Static Type Analysis by Abstract Interpretation of
Python Programs. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 17:1–17:29. https://doi.org/10.4230/LIPICS.ECOOP.2020.17

[55] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith, David Walker, Stephanie
Weirich, and Steve Zdancewic. 1999. TALx86: A realistic typed assembly language. In 1999 ACM SIGPLAN Workshop
on Compiler Support for System Software Atlanta, GA, USA. 25–35.

[56] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to typed assembly language. ACM
Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (1999), 527–568. https://doi.org/10.1145/319301.
319345

[57] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F to typed assembly language. ACM
Trans. Program. Lang. Syst. 21, 3 (1999), 527–568. https://doi.org/10.1145/319301.319345

[58] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for c. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machinery, New York,
NY, USA, 245–258. https://doi.org/10.1145/1542476.1542504

[59] George C. Necula. 1997. Proof-Carrying Code. In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January
1997, Peter Lee, Fritz Henglein, and Neil D. Jones (Eds.). ACM Press, 106–119. https://doi.org/10.1145/263699.263712

[60] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and Systems (TOPLAS) 27, 3 (2005),
477–526. https://doi.org/10.1145/1065887.1065892

[61] Olivier Nicole, Matthieu Lemerre, and Xavier Rival. 2022. Lightweight Shape Analysis Based on Physical Types. In 23rd
International Conference on Verification, Model Checking, and Abstract Interpretation – VMCAI 2022 (Lecture Notes in
Computer Science, Vol. 13182), Bernd Finkbeiner and ThomasWies (Eds.). Springer, 219–241. https://doi.org/10.1007/978-
3-030-94583-1_11

[62] Jens Palsberg. 2001. Type-based analysis and applications. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, John Field
and Gregor Snelting (Eds.). ACM, 20–27. https://doi.org/10.1145/379605.379635

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

https://doi.org/10.1007/S10817-008-9099-0
https://doi.org/10.1145/3093333.3009881
https://doi.org/10.1145/3093333.3009881
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.48550/arXiv.2203.13445
https://doi.org/10.1145/3290380
https://doi.org/10.1016/0022-0000(78)90014-4
http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.4230/LIPICS.ECOOP.2020.17
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1145/379605.379635

272:30 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

[63] Marina Polishchuk, Ben Liblit, and Chloë W. Schulze. 2007. Dynamic heap type inference for program understanding
and debugging. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2007, Nice, France, January 17-19, 2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 39–46. https:
//doi.org/10.1145/1190216.1190225

[64] Reese T. Prosser. 1959. Applications of Boolean Matrices to the Analysis of Flow Diagrams. In Papers Presented at the
December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference (Boston, Massachusetts) (IRE-AIEE-ACM ’59
(Eastern)). ACM, New York, NY, USA, 133–138. https://doi.org/10.1145/1460299.1460314

[65] John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Logic in Computer Science, 2002.
Proceedings. 17th Annual IEEE Symposium on. IEEE, 55–74. https://doi.org/10.1109/LICS.2002.1029817

[66] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren. 1995. Supporting dynamic data structures on
distributed-memory machines. ACM Trans. Program. Lang. Syst. 17 (1995), 233–263. https://doi.org/10.1145/201059.
201065

[67] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2010. Low-level liquid types. In POPL. ACM, New York, NY,
USA, 131–144. https://doi.org/10.1145/1706299.1706316

[68] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks. 2019. Achieving Safety Incremen-
tally with Checked C. In Principles of Security and Trust - 8th International Conference, POST 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11426), Flemming Nielson and David Sands (Eds.). Springer, 76–98.
https://doi.org/10.1007/978-3-030-17138-4_4

[69] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021.
RefinedC: automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

[70] Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu. 2024. A dependent nominal physical type system for the
static analysis of memory in low level code. Technical Report. https://hal.science/hal-04649674 Full version with
appendices.

[71] Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu. 2024. Artifact for the paper A Dependent Nominal
Physical Type System for the Static Analysis of Memory in Low Level Code. https://doi.org/10.5281/zenodo.13383433

[72] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In 2013 IEEE Symposium
on Security and Privacy. 48–62. https://doi.org/10.1109/SP.2013.13

[73] Robert D. Tennent and Dan R. Ghica. 2000. Abstract Models of Storage. High. Order Symb. Comput. 13, 1/2 (2000),
119–129. https://doi.org/10.1023/A:1010022312623

[74] Mads Tofte. 1990. Type Inference for Polymorphic References. Inf. Comput. 89, 1 (1990), 1–34. https://doi.org/10.1016/
0890-5401(90)90018-D

[75] John Toman, Ren Siqi, Kohei Suenaga, Atsushi Igarashi, and Naoki Kobayashi. 2020. ConSORT: Context- and Flow-
Sensitive Ownership Refinement Types for Imperative Programs. In Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),
Peter Müller (Ed.). Springer, 684–714. https://doi.org/10.1007/978-3-030-44914-8_25

[76] Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, bytes, and separation logic. In Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19,
2007, Martin Hofmann and Matthias Felleisen (Eds.). ACM, 97–108. https://doi.org/10.1145/1190216.1190234

[77] David Walker. 2005. Advanced topics in types and programming languages. The MIT Press Cambridge, Chapter
Substructural type systems, 3–44.

[78] Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP Symb. Comput. 8, 4 (1995), 343–355. https:
//doi.org/10.1007/BF01018828

[79] Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and computation
(1994). https://doi.org/10.1006/inco.1994.1093

[80] Hongwei Xi and Robert Harper. 2001. A Dependently Typed Assembly Language. In Proceedings of the Sixth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001,
Benjamin C. Pierce (Ed.). ACM, 169–180. https://doi.org/10.1145/507635.507657

[81] Feng Zhou, Jeremy Condit, Zachary R. Anderson, Ilya Bagrak, Robert Ennals, Matthew Harren, George C. Necula,
and Eric A. Brewer. 2006. SafeDrive: Safe and Recoverable Extensions Using Language-Based Techniques. In 7th
Symposium on Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, Brian N.
Bershad and Jeffrey C. Mogul (Eds.). USENIX Association, 45–60.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

https://doi.org/10.1145/1190216.1190225
https://doi.org/10.1145/1190216.1190225
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/201059.201065
https://doi.org/10.1145/201059.201065
https://doi.org/10.1145/1706299.1706316
https://doi.org/10.1007/978-3-030-17138-4_4
https://doi.org/10.1145/3453483.3454036
https://hal.science/hal-04649674
https://doi.org/10.5281/zenodo.13383433
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1023/A:1010022312623
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1016/0890-5401(90)90018-D
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1145/1190216.1190234
https://doi.org/10.1007/BF01018828
https://doi.org/10.1007/BF01018828
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/507635.507657

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:31

A Physical Dependent Types
This section provide additional results on the TypedC type-system and the lattice of type-offsets.

A.1 Well-formed Type Definitions
The set of type definitions Δ induces a derivation relation between types, ≺Δ defined in Table 2.
The relation ≺Δ is well-founded by the Req. 2. The following property of ≺Δ is used to define the
join semi-lattice of type-offsets:

Proposition 1. A well-founded relation ≺Δ induces a DAG over type expressions and a domination
relation ⊑ whose entry is byte.

Proof. We define a graph𝐺≺Δ ≜ (T,→) where 𝜏1 → 𝜏2 iff 𝜏1 ≺Δ 𝜏2. Because ≺Δ is well-founded,
there is no loop in this graph so𝐺≺Δ is a DAG. The only type with no predecessor by ≺Δ in Table 2
is byte.
The domination relation [4, 64] is defined by 𝜏 ⊑ 𝜏 ′ iff all paths in the DAG of ≺Δ from the entry

byte to 𝜏 are included in the set of paths from the entry to 𝜏 ′. □

A.2 Lattice of Type-offsets
The set of closed type-offsets (TO) is P ≜ T × N. Given an allocation map m ∈ M, the type-offset
derivation relation ≺Pm ⊆ P × P is defined in Fig. 5.
Although the relation ≺Pm on P is linked with the semantics (by m), it has also a relation with

the purely syntactic relation ≺Δ on types (see Table 2), as stated by the following property which is
follows from the definitions of these relations:

Lemma A.1. Let (𝜏, 𝑘), (𝜏 ′, 𝑘 ′) ∈ P such that (𝜏, 𝑘)≺Pm (𝜏 ′, 𝑘 ′). Then 𝑘 ≤ 𝑘 ′ and 𝜏 ≺Δ 𝜏 ′.

Proof. By induction on the definition of ≺Pm in Fig. 5 using the definition of ≺Δ in Table 2. □

The above property has an important corollary: ≺Pm is well-founded since ≺Δ is well-founded.
The connection between type-offset and byte tags (𝜌, 𝑘) is given by the following:

Lemma A.2. If (𝜌, 𝑘) ∈ R is a well-formed byte tag then path(𝜌, 𝑘) ∈ P+m.
The proof follows from the by induction on the structure of region tags. However, the reverse

property is not true as shown by the following counterexample:
1 def c := a×b; def a := byte;
2 def b := ∃𝛼 :(byte with self*self+1==0). byte with self==𝛼;

The sequence 𝜋 = ⟨(𝑐, 0), (𝑎, 0), (byte, 0)⟩ is in P+m, but there is no well formed byte tag such that
path(𝜌, 0) = 𝜋 since [[𝑐]]m = [[𝑏]]m = ∅ for any m. This asymmetry demonstrates the relevance of
both notions: a byte tag (𝜏/®𝜌, 𝑘) (and the associated path) gives the position of a byte in a region
tagged by 𝜏/®𝜌 (and allocated of type 𝜏), while the type offset (𝜏, 𝑘) characterizes all addresses
having the same type offset, i.e., 𝛾P,m (𝜏, 𝑘) from Fig. 6.
We define below the domination relation between closed type offsets, ⊑Pm. Notice that all

sequences of type-offset end in (byte, 0) and the relation ≺Pm is well-founded, so the directed
graph induced by ≺Pm is acyclic and has as entry (byte, 0). We denote by ≺P∗m the reflexive and
transitive closure of ≺Pm.
Definition A.3 (Domination over type offsets). For any (𝜏, 𝑘), (𝜏, 𝑘 ′) ∈ Pm we say that (𝜏, 𝑘)

dominates (𝜏 ′, 𝑘 ′), denoted (𝜏, 𝑘) ⊑P,m (𝜏 ′, 𝑘 ′) iff for any (𝜏1, 𝑘1) if (𝜏 ′, 𝑘 ′)≺P∗m (𝜏1, 𝑘1) then
(𝜏, 𝑘)≺P∗m (𝜏1, 𝑘1).
From the properties of ≺Pm we obtain that:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:32 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

Theorem A.4. The domination relation ⊑P,m over Pm is a tree relation of root (byte, 0).

Proof. Clearly (byte, 0)≺P∗m (𝜏, 𝑘) for any (𝜏, 𝑘). Because ⊑P,m is defined using the transitive
closure of ≺Pm which is a partial order, then ⊑P,m is a tree relation. □

The above theorem has as corollary that, for a fixed m, we could define a join semi-lattice
𝑇𝑂m = ⟨Pm, ⊑Pm, ⊔Pm ⟩ where (𝜏1, 𝑘1) ⊔Pm (𝜏2, 𝑘2) is the least upper bound w.r.t. ⊑Pm.

The following theorem states properties of the domination relation with respect to type-offset
concretization into P+m:

Theorem A.5. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm. Then:
(1) 𝛾P+,m (𝜏1, 𝑘1) ⊆ 𝛾P+,m (𝜏2, 𝑘2) iff (𝜏1, 𝑘1) ⊑Pm (𝜏2, 𝑘2), i.e., the domination relation corresponds to

inclusion of type-offset concretizations into well-formed sequences of TO;
(2) ∃(𝜏, 𝑘) ∈ Pm such that𝛾P+,m (𝜏, 𝑘) = 𝛾P+,m (𝜏1, 𝑘1)∪𝛾P+,m (𝜏2, 𝑘2) iff (𝜏, 𝑘) = (𝜏1, 𝑘1) ⊔Pm (𝜏2, 𝑘2),

i.e., the join operator computes the least common dominator.
(3) 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ iff there is no (𝜏, 𝑘) such that (𝜏, 𝑘)≺P∗m (𝜏1, 𝑘1) and
(𝜏, 𝑘)≺P∗m (𝜏2, 𝑘2).

Proof. Concretization 𝛾P+,m captures all the paths traversing a type-offset. □

Theorem 5.1. Let m be an allocation map and (𝜏1, 𝑘1), (𝜏2, 𝑘2) ∈ Pm.
(1) If (𝜏1, 𝑘1) ⊑P,m (𝜏2, 𝑘2) then 𝛾P,m (𝜏1, 𝑘1) ⊇ 𝛾P,m (𝜏2, 𝑘2), i.e., a dominating type-offset includes

the addresses of the dominated type-offset.
(2) If 𝛾P+,m (𝜏1, 𝑘1) ∩ 𝛾P+,m (𝜏2, 𝑘2) = ∅ then 𝛾P,m (𝜏1, 𝑘1) ∩ 𝛾P,m (𝜏2, 𝑘2) = ∅, i.e., if there is no path

going through both (𝜏1, 𝑘1) and (𝜏2, 𝑘2) then they don’t share addresses.

Proof. (1) From the fact that ⊑P,m is a domination relation, all the paths from (byte, 0) to
(𝜏2, 𝑘2) pass by (𝜏1, 𝑘1). Or 𝛾P,m capture the addresses of all paths, qed.

(2) Same reasoning as above.
□

B A Low Level Programming Language
Our analysis is defined for both C and binary code. For sake of readability, we present the analysis
for a very simple imperative language Whilemem which includes the most important features of low
level code: assignment, integer and pointer arithmetics, memory allocation, and standard control
flow statements. Features like addressable stack, unstructured control flow and function calls may
be dealt with classical techniques, orthogonal to our approach.

𝑥 ∈ X program variables 𝜂 ∈ N type name
ℓ ∈ Z, 𝑘 ∈ V integer resp. bit vector constants ⋄ bit vector, comparison and logical operators

Expressions Exp ∋ E ::= 𝑘 | 𝑥 | E ⋄ E | ∗ℓE
Commands Cmd ∋ C ::= skip | 𝑥 := E | 𝑥 := malloc𝜂 (E) | ∗ℓE := E | assume E

| C;C | while E do C | if E then C else C

Fig. 7. Syntax of Whilemem

B.1 Syntax
The syntax of Whilemem is given by the grammar in Fig. 7. Memory locations are obtained using
dynamic memory allocation and pointer arithmetics. We denote by A the set of addresses, i.e., values
of memory locations. To simplify the presentation, we consider a little-endian ABI, although the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:33

endianness is a parameter of our analysis. The values V are bit vectors, i.e., non-negative integers
represented as fixed size sequences of bytes. The arithmetic, logical and comparison operators
⋄ ∈ {+,−,×, /,&, |,=, ≤, . . .} are extended to bit vector values in V using the semantic given by the
ABI in a classic way. Like in C or assembler, we interpret non null expressions as true and null
expressions as false. Comparison expressions evaluate to 1 when they hold and to 0 otherwise.
The memory may be read (resp. written) on ℓ bytes at an address given by an expression 𝐸 using
the load expression ∗ℓ𝐸 (resp. store command ∗ℓ𝐸 := 𝐸′). Due to pointer arithmetics allowed in
expressions, the grammar of expressions is enough to encode array access 𝐸[𝐸′] or field access
𝐸.𝐸′. We assume that instances of malloc are labeled by type names 𝜂 defined in the program and
allocates a number of bytes equal to 𝐸 times the size of 𝜂. The assume command always succeeds
and changes the program’s state such that the expression in argument becomes true; it is used to
insert annotations in the program’s abstract state.

B.2 Untyped Semantics
Values. The values manipulated by our programs are bit vectors, i.e., non-negative integers

representable on a given number of bytes. The set of bit vectors, denoted by V, is defined by:

V ≜ {(𝑙, 𝑣) | 𝑙 ∈ Z, 𝑣 ∈ [0, 28𝑙 − 1]}
where 𝑙 is the number of bytes used to represent the value 𝑣 . The bit vectors are composed using
bit vectors concatenation; given two bit vectors 𝑥 and 𝑦, their concatenation denoted by 𝑥 :: 𝑦 is
defined as follows:

(𝑙1, 𝑣1) :: (𝑙2, 𝑣2) = (𝑙1 + 𝑙2, 𝑣1 + 28𝑙1𝑣2)
The set of values represented on 𝑛 bytes is denoted by V𝑛 . We denote byW the number of bytes

used to store addresses in our programming language (in most programming languages like C, this
size would be either 4 or 8). We also use A to denote the set of address values, i.e., VW .

Dynamic semantics. To define the execution semantics of our programming language, we intro-
duce the notions of store and heap.

The variables’ store (or simply store) 𝜎 ∈ � maps program variable to their values:

𝜎 ∈ � ≜ [X→ V]
We denote by 𝜎 [𝑥] the value mapped to 𝑥 in 𝜎 and by 𝜎 [𝑥 ← 𝑣] the update to 𝑣 of the value
mapped by 𝜎 in 𝑥 .
The heap h ∈ H is a partial function that maps addresses to one-byte values:

h ∈ H ≜ [A⇀ V1]
We denote by h[𝑎..𝑎 + 𝑙] the load from heap operation which returns the bit vector of size 𝑙 obtained
by concatenation of values ℎ(𝑎) :: ℎ(𝑎 + 1) :: . . . :: ℎ(𝑎 + 𝑙 − 1). The store to heap operation at address
𝑎 on 𝑙 consecutive values with the new value 𝑣 ∈ V𝑙 is denoted by h[𝑎..𝑎 + 𝑙 ← 𝑣].

An untyped state 𝑠 ∈ S is pair of a store and a heap:

𝑠 = (𝜎, h) ∈ S ≜ (� × H)
In the following, we denote by dom(𝑓) the definition domain of function 𝑓 .
The semantics of expressions is defined by the judgment 𝑠 ⊢ E ⇓ 𝑣 saying that in the state 𝑠 ∈ S,

the expression E evaluates to value 𝑣 ∈ V. This judgment is defined by the rules in Fig. 8.
The semantics of commands is defined by the judgment 𝑠 ⊢ C ⇒ 𝑠′ meaning that the command

C transforms the state 𝑠 ∈ S into a new state 𝑠′ ∈ S. This judgment is defined by the rules in Fig. 9.
We comment some of these rules.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:34 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

(𝜎, h) ⊢ 𝑥 ⇓ 𝜎 [𝑥]
Env

𝑠 ⊢ 𝑘 ⇓ 𝑘
Const

𝑠 ⊢ E ⇓ 𝑎 [𝑎, 𝑎 + ℓ] ⊆ dom(h)
𝑠 ⊢ ∗ℓE ⇓ h[𝑎..𝑎 + ℓ]

Load

𝑠 ⊢ E1 ⇓ 𝑣1 𝑠 ⊢ E2 ⇓ 𝑣2 𝑣1, 𝑣2 ∈ Vℓ 𝑣2 ≠ 0
𝑠 ⊢ E1/E2 ⇓ 𝑣1/𝑣2

Div

𝑠 ⊢ E1 ⇓ 𝑣1 𝑠 ⊢ E2 ⇓ 𝑣2 𝑣1, 𝑣2 ∈ Vℓ ⋄ ∈ {+,−,×, . . . }
𝑠 ⊢ E1 ⋄ E2 ⇓ 𝑣1 ⋄ 𝑣2

Binop

𝑠 ⊢ E ⇓ 𝑣 𝑣 ∈ Vℓ ⊲ ∈ {−,¬}
𝑠 ⊢ ⊲ E ⇓ ⊲ 𝑣

Unop

Fig. 8. Dynamic semantics of expressions in Whilemem

Skip
𝑠 ⊢ skip⇒ 𝑠

Seq
𝑠 ⊢ C1 ⇒ 𝑠1 𝑠1 ⊢ C2 ⇒ 𝑠2

𝑠 ⊢ C1;C2 ⇒ 𝑠2

Assign
(𝜎, h) ⊢ E ⇓ 𝑣

(𝜎, h) ⊢ 𝑥 := E⇒ (𝜎 [𝑥 ← 𝑣], h)

Store
(𝜎, h) ⊢ E1 ⇓ 𝑎 ∈ VW (𝜎, h) ⊢ E2 ⇓ 𝑣 ∈ V𝑙
(𝜎, h) ⊢ ∗ℓ E1 := E2 ⇒ (𝜎, h[𝑎..𝑎 + ℓ ← 𝑣])

Alloc
(𝜎, h) ⊢ E ⇓ ℓ ℓ > 0 [𝑎..𝑎 + ℓ] ∪ dom(h) = ∅ 𝑣 ∈ Vℓ
(𝜎, h) ⊢ 𝑥 := malloc𝜂 (E) ⇒ (𝜎 [𝑥 ← 𝑎], h[𝑎..𝑎 + ℓ ← 𝑣])

Alloc0
(𝜎, h) ⊢ E ⇓ ℓ ℓ > 0

(𝜎, h) ⊢ 𝑥 := malloc𝜂 (E) ⇒ (𝜎 [𝑥 ← 0], h)
Assume

𝑠 ⊢ E ⇓ 𝑣 𝑣 ≠ 0
𝑠 ⊢ assume E⇒ 𝑠

Then
𝑠 ⊢ assume E;C1 ⇒ 𝑠′

𝑠 ⊢ if E then C1 else C2 end⇒ 𝑠′
Else

𝑠 ⊢ assume ¬E;C2 ⇒ 𝑠′

𝑠 ⊢ if E then C1 else C2 end⇒ 𝑠′

WhileEnd
𝑠 ⊢ E ⇓ 0

𝑠 ⊢ while E do C done⇒ 𝑠

WhileLoop
𝑠 ⊢ E ⇓ 𝑣 𝑣 ≠ 0 𝑠 ⊢ C ⇒ 𝑠1 𝑠1 ⊢ while E do C done⇒ 𝑠2

𝑠 ⊢ while E do C done⇒ 𝑠2

Fig. 9. Dynamic semantics of statements in Whilemem

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:35

The memory write ∗ℓE1 := E2 evaluates E1 and, if it results in a valid heap address, (i.e. a value in
A that is in the domain of h), stores the result of evaluating E2 at that address, if E2 evaluates to a
bit vector size ℓ .

Thememory allocation 𝑥 := malloc𝜂 (E) makes a non-deterministic choice: either it assigns 𝑥 to 0,
or if E evaluates to a positive value ℓ , writes an indeterminate value to a region that was previously
unmapped in h, and assigns to 𝑥 the base address of that region.
The assumption assume E selects the state where E evaluates to true (i.e., ≠ 0).
The conditional if E then C1 else C2 end is expressed in terms of assumptions, when E evaluates

to true (i.e. ≠ 0), we follow the “then” branch C1, otherwise the follow the “else” branch C2.
Finally, the semantics of loops while E do C done states that if the loop condition E is not longer

true (or it never was to begin with) then the loop ends. Otherwise, the loop is executed one more
time. Of course, these rules do not consider loop termination.

B.3 Typed Concrete Semantics
This is an additional material for §6.

Theorem 6.2 (Safe store inside a region). Let (m, ℎ) be a well-typed heap, 𝑎 ∈ dom(ℎ) an
allocated address such that (𝜌, 𝑘) ∈ m(𝑎) and 𝑠 = size(𝜌). Let 𝑣 ∈ Vℓ be a value. Then ℎ[𝑎..𝑎 + ℓ ← 𝑣]
is a safe store iff ℎ[𝑎 − 𝑘..𝑎 − 𝑘 + 𝑠 ← ℎ[𝑎 − 𝑘..𝑎] :: 𝑣 :: ℎ[𝑎 + ℓ ..𝑎 − 𝑘 + 𝑠]] is a safe store.

Proof. Follows fromℎ[𝑎..𝑎+ℓ ← 𝑣] = ℎ[𝑎−𝑘..𝑎−𝑘+𝑠 ← ℎ[𝑎−𝑘..𝑎] :: 𝑣 :: ℎ[𝑎+ℓ ..𝑎−𝑘+𝑠]]. □

Theorem 6.2 (Name matching implies monotony). Let m,m′ ∈ A⇀ R such that m⇝ m′. Then:
∀𝜏 ∈ T : L𝜏 Mm ⊆ L𝜏 Mm′ and [[𝜏]]m ⊆ [[𝜏]]m′ .

Proof. By structural induction on types using the well-founded relation ≺Δ and the definition
of L · Mm and [[·]]m in Table 4. □

C Analysis Rules
We present here the full set of abstract transformers shortly described in §7.

C.1 Rules’s Overview and Their Soundness Theorems
As usual in abstract interpretation [19], our abstract transformers (analysis rules) derive from the
definition of our domain and its concretization. These transformers involve many different opera-
tions requiring interaction between the different parts of the analysis. To simplify the presentation,
we describe the abstract transformers as a set of deduction rules over the formulas that our abstract
domains represent. These formulas are given as judgements below. The rules could be used as a
proof witness of the type safety of the program.

We sort the rules and the associated judgements in the following classes:
• Rules that define the translation of the imperative program constructs into side-effect-free
symbolic expressions: {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠

♯

2} for expressions and {𝑠
♯

1} 𝐶 {𝑠
♯

2} for commands;
• Rules for inferring typing judgments 𝑠♯ ⊨ 𝑒 : 𝜏 from the contents of the 𝑠♯ .Γ♯ component
of the abstract state, the previous typing judgments, and the relation between symbolic
expressions;
• Rules that infer or adds numerical constraints 𝑠♯ ⊨ 𝑒 based on conditionals encountered in
the program or from the inferred typing judgments;
• Rules for refining the abstract state 𝑠♯1 ⇒ 𝑠

♯

2 based on the inferred numerical facts and typing
judgments;
• Rules that infer properties of values read from the heap {𝑠♯1} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠

♯

2};

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:36 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

• Rules that check the safety of stores to the heap {𝑠♯1} ∗ℓ 𝑒1 := 𝑒2 {𝑠♯2};
• Rules for joining states 𝑠♯1 ⊔ 𝑠

♯

2 when there is a merge in the control flow, which involves
operations that degrade the precision in the domain (rules Leq*), and merge different types
and symbolic expressions (rules Matching*).

The following soundness theorem describes the meaning of each kind of rule, and how we prove
that each rule is correct. The proofs rely on the concepts described in §5.

Theorem C.1 (Soundness of the analysis). For all 𝑠♯, 𝑠♯1𝑠
♯

2 ∈ S♯; for all 𝑠, 𝑠1, 𝑠2 ∈ S, for all
𝑒, 𝑒1, 𝑒2 ∈ Ê, for all 𝜏, 𝜏1, 𝜏2 ∈ T̂, for all m and 𝜈 :

Command evaluation If {𝑠♯1} 𝐶 {𝑠
♯

2} and 𝑠1 ∈ 𝛾S♯ (𝑠♯1) and 𝑠1 ⊢ 𝐶 ⇒ 𝑠2, then 𝑠2 ∈ 𝛾S♯ (𝑠♯2).
Expression evaluation If {𝑠♯1} 𝐸 ⇓ 𝑒 {𝑠

♯

2} and 𝑠 ∈ 𝛾S♯ (𝑠♯1) and 𝑠 ⊢ 𝐸 ⇓ 𝑣 . Let (m, 𝜈) such that
𝑠 ∈ 𝛾

M♯ (𝑠♯1) (m, 𝜈). Then 𝑠 ∈ 𝛾S♯ (𝑠♯2) and 𝑠 ∈ 𝛾M♯ (𝑠♯2) (m, 𝜈) and 𝛾Ê (𝑒) (𝜈) = 𝑣 .
Reduction If 𝑠♯1 ⇒ 𝑠

♯

2 , then 𝛾S♯ (𝑠♯1) = 𝛾
S♯ (𝑠♯2) and 𝑠

♯

1 ⊑ 𝑠
♯

2
Numerical queries If 𝑠♯ ⊨ 𝑒 , 𝑠 ∈ 𝛾

S♯ (𝑠♯) and 𝑠 ∈ 𝛾M♯ (𝑠♯) (m, 𝜈), then 𝛾Ê (𝑒) (𝜈) ≠ 0.
Typing judgments If 𝑠♯ ⊨ 𝑒 : 𝜏 and 𝑠 ∈ 𝛾

S♯ (𝑠♯) and 𝑠 ∈ 𝛾
M♯ (𝑠♯) (m, 𝜈), then 𝛾

Ê
(𝑒) (𝜈) ∈

𝛾
T̂
(𝜏) (m, 𝜈).

Inclusion between symbolic types with offsets If 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2), then
(𝛾
T̂
(𝜏1) (m, 𝜈), 𝛾Ê (𝑒1) (𝜈)) ⊑P (𝛾T̂ (𝜏2) (m, 𝜈), 𝛾Ê (𝑒2) (𝜈)).

Load operation If {𝑠♯1} ∗ℓ 𝑒1 ⇓ 𝑒2 {𝑠♯2}, (𝜎,ℎ) ∈ 𝛾
S♯ (𝑠♯1), (𝜎,ℎ) ∈ 𝛾

M♯ (𝑠♯1) (m, 𝜈) and 𝑣1 =

𝛾
Ê
(𝑒1) (𝜈), then (𝜎,ℎ) ∈ 𝛾S♯ (𝑠♯2) and ℎ[𝑣1..𝑣1 + ℓ] = 𝛾

Ê
(𝑒2) (𝜈).

Store operation If {𝑠♯1} ∗ℓ 𝑒1 := 𝑒2 {𝑠♯2}, (𝜎,ℎ) ∈ 𝛾S♯ (𝑠♯1), (𝜎,ℎ) ∈ 𝛾M♯ (𝑠♯1) (m, 𝜈), 𝑣1 = 𝛾
Ê
(𝑒1) (𝜈)

and 𝑣2 = 𝛾
Ê
(𝑒2) (𝜈), then (𝜎,ℎ[𝑣1..𝑣1 + ℓ] ← 𝑣2) ∈ 𝛾S♯ (𝑠♯2).

Join 𝛾
S♯ (𝑠♯1 ⊔ 𝑠

♯

2) ⊇ 𝛾S♯ (𝑠♯1) ∪ 𝛾S♯ (𝑠♯2).

In the next sections, we present each category of rules and prove their soundness.

C.2 Inclusion Rules
We want to define the abstract counterpart of the ⊑P operation in lattice𝑇𝑂 (see §5). Intuitively, we
would want to say that (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2) to mean that given any valuation 𝜈 , the corresponding
(𝜏1, 𝑘1) and (𝜏2, 𝑘2) that the symbolic type represent are such that (𝜏1, 𝑘1) ⊑♯P (𝜏2, 𝑘2). However, this
could be too imprecise, we actually want to consider only the valuations that can be represented
by a given state 𝑠♯. Hence, our judgments are of the form 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:37

LeqByte
𝑠♯ ⊨ (𝜏, 𝑒) ⊑♯

P
(byte[size(𝜏)], 𝑒)

LeqNamed
𝑠♯ ⊨ (𝜂, 𝑒) ⊑♯

P
(Δ(𝜂), 𝑒)

LeqWith
𝑠♯ ⊨ ({𝑥 : 𝜏 | 𝑒1} , 𝑒2) ⊑♯P (𝜏, 𝑒2)

LeqInter
𝑠♯ ⊨ (𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏1/|𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

LeqUnion
𝑠♯ ⊨ (𝜏1, 𝑒) ⊑♯P (𝜏, 𝑒3)
𝑠♯ ⊨ (𝜏2, 𝑒) ⊑♯P (𝜏, 𝑒3)

𝑠♯ ⊨ (𝜏1 ∪ 𝜏2, 𝑒) ⊑♯P (𝜏, 𝑒3)

LeqProd
𝑠♯ ∧ 𝑒 ≤ size(𝜏1) ⇒ 𝑠

♯

1 𝑠
♯

1 ⊨ (𝜏1, 𝑒) ⊑
♯

P
(𝜏3, 𝑒3)

𝑠♯ ∧ 𝑒 > size(𝜏1) ⇒ 𝑠
♯

2 𝑠
♯

2 ⊨ (𝜏2, 𝑒) ⊑
♯

P
(𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏1 × 𝜏2, 𝑒) ⊑♯P (𝜏3, 𝑒3)

LeqArray
𝑠♯ ⊨ size(𝜏) = ℓ 𝑠♯ ⊨ 0 ≤ 𝑒2 < size(ℓ ∗ 𝑒) 𝑠♯ ⊨ (𝜏, 𝑒 mod ℓ) ⊑♯

P
(𝜏3, 𝑒3)

𝑠♯ ⊨ (𝜏[𝑒], 𝑒2) ⊑♯P (𝜏3, 𝑒3)

LeqByte this rule is used as safe fallback if we fail to find an upper bound when joining types,
is notably useful for pointer types.

LeqNamed, LeqWith directly derive from the definition of these types, which have only
one predecessor in the (𝜏, 𝑘) graph.

LeqInter since 𝜏2 is closer to byte than 𝜏1 in the ≺ relation between types, we start from it
when trying to find its dominator.

LeqUnion finds a common ancestor between 𝜏1 and 𝜏2. In practice we want the least common
ancestor, and this rule corresponds to doing least-common ancestor search in the dominator
tree.

LeqProd in most cases, size(𝑒1) will be a constant ℓ and one of the condition 𝑒 ≤ ℓ or 𝑒 > ℓ will
be ⊥, but the rule can handle more complex cases, e.g. when we have a structure containing
several integers and the offset inside the structure is not precisely known.

LeqArray note the condition 𝑠♯ ⊨ 0 ≤ 𝑒2 < size(ℓ ∗ 𝑒), as the rule is incorrect if 𝑒 can be out
of bound.

Notice that we don’t have a rule for existential types. The existential type must have been instanti-
ated (using rule Instantiate) first.

C.3 Joining States
Intuitively, we want to define the abstract counterpart of the ⊔P operation in lattice 𝑇𝑂 (see §5),
that is, given two pairs of symbolic types and offsets (𝜏1, 𝑒1) and (𝜏2, 𝑒2), we want to find a pair of
symbolic types and offsets (𝜏3, 𝑒3) such that for any valuation, the concrete type and offset that
they represent are related though the ⊔P operation. We want to complete this first definition with
two elements:
• First, we do not to consider all the possible valuations 𝜈 , but only those that correspond to
the states 𝑠♯1 and 𝑠

♯

2 that we are joining;
• Second, we need to make use of a renaming operation 𝜙 that will make similar types coincide.
For instance, if an address belongs to a set represented by 𝑖𝑛𝑡 [4] + 1 in 𝑠♯1 , and by 𝑖𝑛𝑡 [7] + 4 in

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:38 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

𝑠
♯

2 , then it will be in a set 𝑖𝑛𝑡 [𝛼1] + 𝛼2 in 𝑠♯1 ⊔ 𝑠
♯

2 , where 𝛼1 and 𝛼2 are fresh symbolic variables
that are numerically constrained in 𝑠

♯

1 ⊔ 𝑠
♯

2 .
Formally, a renaming function [12] 𝜙 ∈ Ê × Ê ⇀ � takes a pair of different expression and

returns a fresh (or deterministically named [42]) symbol, such that the function is injective (different
pairs of expression return a different symbol). This function can be reversed into two substitutions
that we call 𝜙1 and 𝜙2. We extend this function to the case 𝜙 (𝑒, 𝑒) = 𝑒 where the same expression
appears twice (and no substitution happens).

The judgment ⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 (which is syntactic) means that 𝜙 is a suitable renaming function
for the renaming of expressions within types. Fig. 10 defines this judgment; we denote by 𝜙 (𝜏1, 𝜏2) =
𝜏 the fact that 𝜏1 and 𝜏2 are substituted by 𝜏). Formally,

Theorem C.2. If ⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 , then subst(𝜏1, 𝜙1) = 𝜙 and subst(𝜏2, 𝜙2) = 𝜏 .

MatchingSame
⊨𝜙 𝜙 (𝜏, 𝜏) = 𝜏

MatchingName
⊨𝜙 𝜙 (n(𝑒1, . . . , 𝑒ℓ), n(𝑒ℓ+1, . . . , 𝑒2ℓ)) = n(𝜙 (𝑒1, 𝑒ℓ+1), . . . , 𝜙 (𝑒ℓ , 𝑒2ℓ))

MatchingWith
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏

⊨𝜙 𝜙 ({𝑥 : 𝜏1 | 𝑒1} , {𝑥 : 𝜏2 | 𝑒2}) = {𝑥 : 𝜏 | 𝜙 (𝑒1, 𝑒2)}

MatchingProd
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2 size(𝜏11) = size(𝜏12)

⊨𝜙 𝜙 (𝜏11 × 𝜏21, 𝜏12 × 𝜏22) = 𝜏1 × 𝜏2

MatchingArray
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏 size(𝜏1) = size(𝜏2)

𝜙 (𝜏1[𝑒1], 𝜏2[𝑒2]) = 𝜏[𝜙 (𝑒1, 𝑒2)]

MatchingUnion
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (𝜏11 ∪ 𝜏21, 𝜏12 ∪ 𝜏22) = 𝜏1 ∪ 𝜏2

MatchingInter
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (𝜏11/|𝜏21, 𝜏12/|𝜏22) = 𝜏1/|𝜏2

MatchingExists
⊨𝜙 𝜙 (𝜏11, 𝜏12) = 𝜏1 ⊨𝜙 𝜙 (𝜏21, 𝜏22) = 𝜏2

⊨𝜙 𝜙 (∃𝛼 : 𝜏11. 𝜏21, ∃𝛼 : 𝜏12. 𝜏22) = ∃𝛼 : 𝜏1. 𝜏2

MatchingAddr
⊨𝜙 𝜙 (𝜏1, 𝜏2) = 𝜏

⊨𝜙 𝜙 (𝜏1★ + 𝑒1, 𝜏2★ + 𝑒2) = 𝜏★ + 𝜙 (𝑒1, 𝑒2)

Fig. 10. Renaming function

Most of the rules are simple. Note that:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:39

MatchingProd could be extended when the sizes of the first field do not match, but that
would be complicated (and probably not very useful in practice).

MatchingAddr could be smarter by making 𝜙 (𝜏1★ + 𝑒1, 𝜏2★ + 𝑒2) match if we can join the
pairs (𝜏1, 𝑒1) and (𝜏2, 𝑒2). This would make the formalization significantly more complex, in a
case where the precision is already very bad (as it represent addresses pointing to a byte[W]
region, with the additional knowledge that it contains a pointer).

With this operator in place, we can (implicitly) define our join operator on abstract type environ-
ments by stating that they preserve the following judgment for all the (𝑒1, 𝑒2) pairs in dom(𝜙):

JoingJudgments
𝑠
♯

1 ⊨ 𝑒1 : 𝜏11★ + 𝑒11 𝑠
♯

1 ⊨ (𝜏11, 𝑒11) ⊑
♯

P
(𝜏111, 𝑒111)

𝑠
♯

2 ⊨ 𝑒2 : 𝜏22★ + 𝑒22 𝑠
♯

2 ⊨ (𝜏22, 𝑒22) ⊑
♯

P
(𝜏222, 𝑒222)

⊨𝜙 𝜙 (𝜏111, 𝜏222) = 𝜏

𝑠
♯

1 ⊔ 𝑠
♯

2 ⊨ 𝜙 (𝑒1, 𝑒2) : (𝜏★ + 𝜙 (𝑒111, 𝑒222))

JoinJudgments explains how Γ♯ is computed: for each pair (𝑒1, 𝑒2) of expressions which needs
to be joined, we get their respective values 𝑠♯1 .Γ

♯ [𝑒1] and 𝑠♯2 .Γ♯ [𝑒2], climb the ⊑♯
P
equivalent

to the ⊑P domination tree on the concrete types to find a matching pair of (symbolic type,
symbolic expression) pairs; that we can use as the result (after some renaming using 𝜙 , which
in turns may require new pairs of expression to be added to Γ♯, in the case where these
expressions could represent some adresses).

We define ⊔𝜙
�♯

as the smallest Γ♯ that can produce these judgments (given a 𝜙).

We suppose that ⊔𝜙
�♯

is given, and ⊔𝜙
�♯

is defined as follows:

𝜎
♯

1 ⊔
𝜙

�♯
𝜎
♯

2 ≜ 𝜆𝑥 ∈ X. 𝜙 (𝜎♯

1 [𝑥], 𝜎
♯

2 [𝑥])

We can now define the join between two abstract states as:

(𝜎♯

1 , Γ
♯

1 , 𝜈
♯

1) ⊔ (𝜎
♯

2 , Γ
♯

2 , 𝜈
♯

2) ≜ ∃ minimal 𝜙 : (𝜎♯

1 ⊔
𝜙

�♯
𝜎
♯

2 , Γ
♯

1 ⊔
𝜙

�♯
Γ♯2 , 𝜈

♯

1 ⊔
𝜙

�♯
𝜈
♯

2)

where minimal means that dom(𝜙) should not rename arbitrary pairs of symbolic expressions,
only those that are bound to the same variable in both abstract stores, or whose definition is
required by rule JoinJudgments.

Theorem C.3. For all 𝑠♯1 , 𝑠
♯

2 ∈ S♯:

𝛾
S♯ (𝑠♯1 ⊔ 𝑠

♯

2) ⊇ 𝛾S♯ (𝑠♯1) ∪ 𝛾S♯ (𝑠♯2)

.

C.4 Rules for Compound Commands
These rules are usual. Their meaning is given by the following soundness theorem:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:40 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

skip
{𝑠♯} skip {𝑠♯}

seq
{𝑠♯0} 𝐶1 {𝑠♯1} {𝑠♯1} 𝐶2 {𝑠♯2}

{𝑠♯0} 𝐶1;𝐶2 {𝑠♯2}

if
{𝑠♯0} assume(𝐸);𝐶1 {𝑠♯1} {𝑠♯0} assume(¬𝐸);𝐶2 {𝑠♯2} 𝑠

♯

3 = 𝑠
♯

1 ⊔
♯ 𝑠

♯

2

{𝑠♯0} if(𝐸) 𝐶1 else 𝐶2 {𝑠♯3}

while-done
{𝑠♯0} assume(𝑒);𝐶1 {𝑠♯1} 𝑠

♯

1 ⊑ 𝑠
♯

0 {𝑠♯1} assume(¬𝐸) {𝑠
♯

2}

{𝑠♯0} while(𝐸) do 𝐶1 done {𝑠♯2}

while-again
{𝑠♯0} assume(𝐸);𝐶1 {𝑠♯1} {𝑠♯0∇𝑠

♯

1} while(𝐸) do 𝐶1 done {𝑠♯2}

{𝑠♯0} while(𝐸) do 𝐶1 done {𝑠♯2}

C.5 Rules for Basic Commands

assign
{𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1}

{𝑠♯0} 𝑥 := 𝐸 {𝑠♯2 [𝜎
♯ ← 𝑠

♯

1 .𝜎
♯ [𝑥 ← 𝑒]]}

assume
{𝑠♯0} 𝐸 ⇓ 𝑒 {𝑠

♯

1} 𝜈
♯

2 = 𝑠
♯

1 .𝜈
♯ ∧ (𝑒 ≠ 0) 𝑠

♯

1 [𝜈
♯ ← 𝜈

♯

2] ⇒ 𝑠
♯

3

{𝑠♯0} assume(𝐸) {𝑠
♯

3}

Assign evaluates an expression, which returns an updated state which contains new informa-
tion about this expression, and put in in the abstract store.

Assume updates the abstract valuation with the numerical constraints 𝑒 ≠ 0, propagates this
fact, and returns the result.

C.6 Rules for Expressions

var
{𝑠♯} 𝑥 ⇓ 𝑠♯ .𝜎♯ [𝑥] {𝑠♯}

load
{𝑠♯0} 𝐸 ⇓ 𝑒1 {𝑠

♯

1} {𝑠♯1} ★ℓ𝑒1 ⇓ 𝑒2 {𝑠♯2}

{𝑠♯0} ★ℓ𝐸 ⇓ 𝑒2 {𝑠♯2}

const
{𝑠♯} 𝑘 ⇓ 𝑘 {𝑠♯}

binop
{𝑠♯0} 𝐸1 ⇓ 𝑒1 {𝑠

♯

1} {𝑠♯1} 𝐸2 ⇓ 𝑒2 {𝑠
♯

2}

{𝑠♯} 𝐸1 ⋄ 𝐸2 ⇓ 𝑒1 ⋄ 𝑒2 {𝑠♯2}

These rules just translate program expressions to symbolic expressions. Note that if we want
type safety to include absence of runtime errors like division by zero, we can add the hypothesis
𝑠
♯

2 ⊨ 𝑒2 ≠ 0 to the rule Binop when the binary operator ⋄ is the division.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:41

C.7 The Size Operator on Abstract Types

size : T̂⇀ Ê

size(byte) ≜ 1

size(n(𝑒1, . . . , 𝑒ℓ)) ≜ size(Δ(n(𝑒1, . . . , 𝑒ℓ)))
size(𝜂★ + 𝑒) ≜W

size({𝑥 : 𝜏 | 𝑒}) ≜ size(𝜏)
size(𝜏1 × 𝜏2) ≜ size(𝜏1) + size(𝜏2)
size(𝜏[𝑒]) ≜ 𝑒 ∗ size(𝜏)

size(𝜏1 ∪ 𝜏2) ≜ size(𝜏1) if size(𝜏1) = size(𝜏2)
size(∃𝛼 : 𝜏1. 𝜏2) ≜ size(𝜏2) if 𝛼 ∉ size(𝜏2)

size(𝜏1/|𝜏2) ≜ size(𝜏1)

We note that this operator fails in two cases:
• when the size of an existential type depends on the existentially-bound variable, or
• when the size of components in a union type is different or cannot be proved equal.

When one of these cases happen, we just return an alarm.

C.8 Rules for load
Rules for load are important as it is the way the analysis has to gain information using the typing
invariant.

LoadSimple
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ size(𝜏) = ℓ 𝑠
♯

0 ⊨ 𝑒2 = 0 𝛼 fresh 𝑠
♯

0 ∧ 𝛼 : 𝜏 ⇒ 𝑠
♯

1

{𝑠♯0} ★ℓ𝑒1 ⇓ 𝛼 {𝑠♯1}

LoadLarger
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2)
𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2 ℓ2 ≥ 𝑘 + ℓ {𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1}

{𝑠♯0} ★ℓ1𝑒1 ⇓ 𝑒3 [𝑘..𝑘 + ℓ1] {𝑠
♯

1}

LoadUnionSplit
𝑠
♯

0 ⊨ 𝑒 : 𝜏1 ∪ 𝜏2
𝑠
♯

0 ∧ 𝑒 : 𝜏1 ⇒ 𝑠
♯

1 {𝑠♯1} ★ℓ𝑒 ⇓ 𝑒1 {𝑠′1
♯} 𝑠

♯

0 ∧ 𝑒 : 𝜏2 ⇒ 𝑠
♯

2 {𝑠♯2} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′2
♯}

{𝑠♯0} ★ℓ𝑒 ⇓ 𝜙 (𝑒1, 𝑒2) {𝑠′1
♯ ⊔ 𝑠′2

♯}

LoadSimple applies when we load a interval of length ℓ and we have a pointer whose type is
𝜏★ + 0 with size(𝜏) = ℓ . In this cas, we create a fresh symbolic variable 𝛼 , we give it the type
𝜏 , and we propagate this information (e.g. we propagate with constraints to the numerical
domain). Note that when we have more information about the regions where the address
may point (e.g. when 𝜏 is of the form 𝜏1/|𝜏2), we can recover more information about the
pointed value.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:42 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

LoadLarger applies when the pointer points inside an interval. We can then load the whole
interval, and extract the relevant part as the result. It is possible to extend this rule when 𝑒2
is not constant (by enumerating the possible values of 𝑒2, loading for each possibility, and
joining the resulting states), or by allowing loading of intervals of variable size.

LoadUnionSplit applies when the address is a union type 𝜏1 ∪ 𝜏2. We then fork the analysis
according to both cases, assuming that the address is one of 𝜏1 or 𝜏2, propagate this information,
continue trying to load with both type, and then join the result.

Note that when the address at which the load is done, 𝑒1, is typed by an existential type, other
rules apply like Instantiate.

An alternative to LoadLarger is rule PtrClimbAddrLattice, but LoadLarger is more precise
if it can apply. However, our implementation does not yet have a good array abstraction and we
can only load fixed-size regions, so we use the PtrClimbAddrLattice rule in that case.
Sometimes, the analysis can encounter a situation where none of the above rules apply (e.g.

when loading a null pointer). In this case, we raise an alarm in practice.

C.9 Rules for store

StoreSimple
𝑠♯ ⊨ 𝑒1 : (𝜂★ + 𝑒2) 𝑠♯ ⊨ size(𝜏) = ℓ

𝑠♯ ⊨ 𝑒2 = 0 ∄(𝜂3, 𝑒3) s.t. 𝜂3 ≠ 𝜂 ∧ (𝜂3, 𝑒3) ⊑♯P (𝜂, 𝑒2) 𝑒4 : 𝜂
(
𝑠♯ ∧ (𝛼 : 𝜏)

)
⇒ 𝑠

♯

1

{𝑠♯} ★ℓ𝑒1 := 𝑒4 {𝑠♯}

StoreLarger
𝑠
♯

0 ⊨ 𝑒1 : (𝜏★ + 𝑒2) 𝑠
♯

0 ⊨ 𝑒2 = 𝑘 𝑠
♯

0 ⊨ size(𝜏) = ℓ2

{𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) ⇓ 𝑒3 {𝑠
♯

1} {𝑠♯0} ★ℓ2 (𝑒1 − 𝑘) := 𝑒3 [0..𝑘] :: 𝑒4 :: 𝑒3 [𝑘 + ℓ1..ℓ2] {𝑠♯1}

{𝑠♯0} ★ℓ1𝑒1 := 𝑒4 {𝑠♯1}

StoreUnionSplit
𝑠
♯

0 ⊨ 𝑒 : 𝜏1 ∪ 𝜏2
𝑠
♯

0 ∧ 𝑒 : 𝜏1 ⇒ 𝑠
♯

1 {𝑠♯1} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′1
♯}

𝑠
♯

0 ∧ 𝑒 : 𝜏2 ⇒ 𝑠
♯

2 {𝑠♯2} ★ℓ𝑒 ⇓ 𝑒2 {𝑠′2
♯}

{𝑠♯0} ★ℓ𝑒 := 𝑒2 {𝑠′1
♯ ⊔ 𝑠′2

♯}

StoreSimple The requirement that there is no region deriving from 𝜂 can be relaxed, in that
it is fine to have derived regions that can contain all the values that 𝜂 can.

StoreLarger allows to transform the proof that writing to a part of a region is correct to
the proof that writing to the whole region is correct. This is especially important for mild
updates, where the tag for the whole interval may change.

StoreUnionSplit does a case split to try to prove that storing the value is correct in every
case.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:43

C.10 Other Address-manipulating Rules
PtrCombineInfo
𝑠♯ ⊨ 𝑒1 : 𝜏1★ + 𝑒2 𝑠♯ ⊨ 𝑒1 : 𝜏2★ + 𝑒2

𝑠♯ ⊨ 𝑒1 : ((𝜏1/|𝜏2)★ + 𝑒2)

PtrClimbAddrLattice
𝑠♯ ⊨ 𝑒 : (𝜏1★ + 𝑒1) 𝑠♯ ⊨ (𝜏1, 𝑒1) ⊑♯P (𝜏2, 𝑒2) 𝑠♯ ⊨ 0 ≤ 𝑒1 ≤ size(𝜏1)

𝑠♯ ⊨ 𝑒 : (𝜏2★ + 𝑒2)

PtrAdd
𝑠♯ ⊨ 𝑒 : (𝜏★ + 𝑒1)

𝑠♯ ⊨ (𝑒 + 𝑒2) : 𝜏★ + (𝑒1 + 𝑒2)
PtrClimbAddrLattice can be used as an alternative to LoadLarger in some cases, and

is particularly useful to transforming a load at multiple offsets in an array type into a load
at a single offset in an array element. For instance, if we have def ar := (self:byte |
self ≤ 14)[1870], and an address 𝑒1 of type 𝑎𝑟★+ 𝑒2 with 0 ≤ 𝑒2 < 1870, we can infer that
𝑒1 : {𝑥 : byte | 𝑥 ≤ 14}★ to load the value without enumeration. Taking advantage of the
introduction of types of the form 𝜏★ + 𝑒 , we can infer that the loaded value will be ≤ 14.

PtrCombineInfo can be used to combine knowledge about a pointer, to limit the set of
regions where the pointer may point.

PtrAdd (and PtrSub, not shown) are the rules used to perform pointer arithmetics.

C.11 Typing Rules
UseGamma
𝑠♯ .Γ♯ [𝑒2] = (𝜏, 𝑒)
𝑠♯ ⊨ 𝑒2 : (𝜏★ + 𝑒)

UpcastName
𝑠♯ ⊨ 𝑒 : 𝜂

𝑠♯ ⊨ 𝑒 : Δ(𝜂)

UpcastWith
𝑠♯ ⊨ 𝑒1 : {𝑥 : 𝜏 | 𝑒2}

𝑠♯ ⊨ 𝑒1 : 𝜏

PropagateWith
𝑠♯ ⊨ 𝑒1 : ({𝑥 : 𝜏 | 𝑒2})

𝑠♯ ⊨ 𝑒2 ≠ 0

UpCastProd1
𝑠♯ ⊨ 𝑒 : (𝜏1 × 𝜏2) size(𝜏1) = ℓ

𝑠♯ ⊨ 𝑒 [0..ℓ] : 𝜏1

UpCastProd2
𝑠♯ ⊨ 𝑒 : (𝜏1 × 𝜏2) size(𝜏1) = ℓ1 size(𝜏1 × 𝜏2) = ℓ

𝑠♯ ⊨ 𝑒 [ℓ1..ℓ] : 𝜏2

UpCastUnion
𝑠♯ ⊨ 𝑒 : (𝜏1 ∪ 𝜏2) 𝑠♯ ∧ 𝑒 : 𝜏2 ⇒ ⊥

𝑠♯ ⊨ 𝑒 : 𝜏1

DowncastName
𝑠♯ ⊨ 𝑒 : Δ(𝜂)
𝑠♯ ⊨ 𝑒 : 𝜂

DowncastWith
𝑠♯ ⊨ 𝑒1 : 𝜏 𝑠♯ ⊨ 𝑒2 ≠ 0

𝑠♯ ⊨ 𝑒1 : ({𝑥 : 𝜏 | 𝑒2})

DowncastProd
𝑠♯ ⊨ 𝑒1 : 𝜏1 𝑠♯ ⊨ 𝑒2 : 𝜏2
𝑠♯ ⊨ (𝑒1 :: 𝑒2) : (𝜏1 × 𝜏2)

DowncastUnion
𝑠♯ ⊨ 𝑒 : 𝜏1

𝑠♯ ⊨ 𝑒 : (𝜏1 ∪ 𝜏2)

DowncastExists
𝑠♯ ⊨ 𝑒1 : 𝜏1 𝑠♯ ⊨ 𝑒2 : subst(𝜏2, [𝛼 → 𝑒1])

𝑠♯ ⊨ 𝑒2 : (∃𝛼 : 𝜏1. 𝜏2)

TypEq
𝑠♯ ⊨ 𝑒1 : 𝜏 𝑠♯ ⊨ 𝑒1 = 𝑒2

𝑠♯ ⊨ 𝑒2 : 𝜏

AllByte
size(𝑒) = ℓ

𝑠♯ ⊨ 𝑒 : byteℓ

We call upcast the rules that go from a type to its subterm type, and downcast the rules that
go in the opposite direction (note that in general our upcast rules do not require side conditions
while downcast rules do; however it is the opposite for union types). In general, the Upcast rules

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

272:44 Julien Simonnet, Matthieu Lemerre, and Mihaela Sighireanu

are used whenever necessary, in particular to find the target of addresses in a Load operation, or
to join pointer types when two states are merged. The Downcast rules are used for the Store
operation, where we try to to check that a given value can be casted into a given type for the store
operation to be safe.

Most of the rules are straightforward. Note however that:
• Our rules for UpCastProd1 and UpCastProd2 currently have fixed-size condition on some
of the types (that could be lifted if the symbolic expressions can represent variable-sized bit
vectors).
• The DownCastExists rule is difficult to apply, as it corresponds to quantifier elimination,
for which we need to find a correct 𝛼 . We have implemented a simple version which works
when 𝜏2 contains a refinement constrain of the form self = 𝛼 , as when such a rule exist,
finding the matching 𝛼 to be substituted is simple.
• There are different cases of propagation of numerical information to the type domain:
UpCastUnion eliminates of impossible members in a union type;
DownCastWith allows proving that a with constraint holds for a symbolic expression;
TypEq allows to combine equality information to type information.
• The most important numerical information obtained from types is obtained by the rule
PropagateWith.
• There is no rule UpcastExists: we always use it in the rule Instantiate, which also propa-
gates information learned during the instantiation.
• AllByte allows to combine equality information to type information, and can be used as the
starting point for applying Downcast rules.

C.12 Reduction Rules
Reduction [19, 32] (also called constraint propagation) is an operation which improves the abstract
element without changing the concretization.

Instantiate
𝑠
♯

0 ⊨ 𝑒 : (∃𝛼 : 𝜏1. 𝜏2) 𝛼1 fresh
𝑠
♯

0 ∧ 𝛼1 : 𝜏1 ⇒ 𝑠
♯

1 𝑠
♯

1 ∧ 𝑒 : subst(𝜏2, [𝛼 → 𝛼1]) ⇒ 𝑠
♯

2

𝑠
♯

0 ⇒ 𝑠
♯

2

NumReduc1
𝑠♯ ⊨ 𝑒 ≠ 0 𝑠♯ .𝜈♯ ∧ (𝑒 ≠ 0) ⇒ 𝜈

♯

1

𝑠♯ ⇒ 𝑠♯ [𝜈♯ ← 𝜈
♯

1]

NumReduc2
𝑠♯ .𝜈♯ ⇒ 𝜈

♯

1

𝑠♯ ⇒ 𝑠♯ [𝜈♯ ← 𝜈
♯

1]

TypReduc
𝑠♯ ⊨ 𝑒 : 𝜂1★ + 𝑒1 𝑠♯ ⊨ (𝜂1, 𝑒1) ⊑♯P 𝑠♯ .Γ♯ [𝑒] ∨ 𝑒 ∉ dom(𝑠♯ .Γ♯)

𝑠♯ ⇒ 𝑠♯ [Γ♯ ← 𝑠♯ .Γ♯ [𝑒 ← (𝜂1, 𝑒1)]]

Instantiate this rule is used to open an existentially-bound type by instantiating its parameter
𝛼 into a fresh variable 𝛼1. We try to apply this rule as soon as possible; in particular whenever
we load a field in a structure, then we load all the fields of the structure and we instantiate all
the existentially-bound variables.

NumReduc1 propagates an inferred fact in the numerical abstract domain.
NumReduc2 performs constraint propagation in the numerical abstract domain (e.g. per-

forms transitive closure in the octagon [52] abstract domain), and updates the main domain
accordingly.

TypReduc saves typing judgments that have been infered in the abstract type environment
Γ♯. To ensure that we are performing reduction, we only save results that are more precise
than what already existed in Γ♯. The most important thing to note in this rule is that we

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

A Dependent Nominal Physical Type System for Static Analysis of Memory in Low Level Code (with appendices) 272:45

don’t save arbitrary (𝜏1, 𝑒1) in Γ♯, only rules of the form (𝜂1, 𝑒1). The reason is that arbitrary
𝑒 : 𝜏1★ + 𝑒1 rules may not be preserved when the store operation performs a mild update, as
we discussed in §6; so here we limit the contents of Γ♯ to only contain typing judgments that
are preserved by store. This can be relaxed in two ways; first, because judgments of the form
𝑒 : (𝜏1/|𝜏2)★+ 𝑒1 will also be preserved when there is a mild update, so they can be saved too.
Second, it is possible to save arbitrary judgments 𝑒 : 𝜏1★+𝑒1 in Γ♯, provided that the ones that
are not preserved are removed when they may be affected by a store operation. This would
allow the analysis to be more precise (at the sake of more complexity of the presentation).

D True Alarms and Problems Found while Analyzing the Benchmarks
The following summarizes the alarms that we found during the analysis of the benchmarks in §8.
• Olden/bh In the function maketree, if the mass of all the bodies are not massive, the function
hackcofm is called with a null pointer, which makes it fail.
• Olden/mst The code never checks if pointers returned by malloc are null.
• Shapes/javl The original code was adapted for use as a benchmark in Li et al. [46], and the
macros were changed (notably to remove some do ... while(0) constructs). But nested
inclusion of these new macros introduced variable capture issues on the ndir variable that
led to alarms during the analysis of function jsw_avlinsert.
• Shapes/graph The function node_add allocates some memory but does not write the pointer
anywhere, leading to a memory leak.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 272. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Challenges for Low-Level Spatial Memory Safety
	3 Physical Dependent Types
	3.1 Syntax and Intuitive Semantics
	3.2 Well-Formed Type Definitions

	4 Semantics of Physical Dependent Types
	4.1 Memory Model
	4.2 Denotations of Type Expressions

	5 The DAG and Lattice of Type-Offsets
	6 Concrete Semantics
	7 Type-Checking by Abstract Interpretation
	7.1 Abstract Domains
	7.2 Flow-Sensitive Analysis

	8 Evaluation
	9 Related Work
	10 Conclusion
	References
	A Physical Dependent Types
	A.1 Well-formed Type Definitions
	A.2 Lattice of Type-offsets

	B A Low Level Programming Language
	B.1 Syntax
	B.2 Untyped Semantics
	B.3 Typed Concrete Semantics

	C Analysis Rules
	C.1 Rules's Overview and Their Soundness Theorems
	C.2 Inclusion Rules
	C.3 Joining States
	C.4 Rules for Compound Commands
	C.5 Rules for Basic Commands
	C.6 Rules for Expressions
	C.7 The Size Operator on Abstract Types
	C.8 Rules for load
	C.9 Rules for store
	C.10 Other Address-manipulating Rules
	C.11 Typing Rules
	C.12 Reduction Rules

	D True Alarms and Problems Found while Analyzing the Benchmarks

